The software of systems of elevators needs constant maintenance to deal with new functionality, bug fixes or legislation changes. To automatically validate the software of these systems, a typical approach in industry is to use regression oracles, which execute test inputs both in the software version under test and in a previous software version. However, these practices require a long test execution time and cannot be re-used at different test phases. To deal with these issues, we propose DARIO, a test oracle that relies on regression machine-learning algorithms to detect both functional and non-functional problems of the system. The machine-learning algorithms of this oracle are trained by using data from previously tested versions to predict reference functional and non-functional performance
values of the new versions. An empirical evaluation with an industrial case study demonstrates the feasibility of using our approach. A total of five regression learning algorithms were validated by using mutation testing techniques. For the context of functional bugs, the accuracy when predicting verdicts by DARIO ranged between 95% to 98%, across the different scenarios proposed. For the context of non-functional bugs, were competitive too, having an accuracy when predicting verdicts by DARIO ranging between 83% to 87%.