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Abstract—The rapid increase in number of devices in Internet-
of-Things generates astronomic amounts of data. Dealing with
noisy and low quality data uses more effort than the data
analysis itself. Dealing with noisy data at the source would
significantly reduce the effort of pre-processing during analysis,
as well as the storage and bandwidth overhead. In this paper we
introduce an Adaptive Signal Processing Platform (ASPF) for
CPS/IoT Ecosystems. It provides ability to dynamically detect
noise variation in a signal and successfully filter these components
out of the signal leaving only clean and useful data. The paper
shows two approaches with different requirements on effort and
scalability.

I. INTRODUCTION

Industrial production systems are highly complex structures
dealing with multiple levels of operation and heterogeneity.
They possess data collection and diagnostic capabilities but
they are often highly unsystematic and not designed for pur-
poses of automated data analytic. Nevertheless, this data can be
used to extract hidden technological or commercial insights in
these production processes. By applying state-of-the-art tools
and methods this data can be used to optimize the whole
process, detect faulty products at run time, predict system
failures and anticipate maintenance of individual components
or the whole process. We define a CPS/IoT Ecosystem as
a heterogeneous structure of hardware devices, and corre-
sponding software components implemented in three scopes
of operation: cloud, fog/edge, and sensor/actuator nodes [1].
It ensures data collection from the physical environment of
the application, which is further aggregated and filtered in the
fog and edge, and stored and analysed on a large scale in the
cloud. Industrial facilities are generally noisy environments
and sensors can be impeded to produce clean data. A denoising
process is required to extract useful information before being
analysed for higher levels of abstraction. Denoising is typically
a pre-processing task during analysis and it uses various
methods of approximation to reach most common subset of
values regarded as basis for the data source. In this work we
explore the ability to denoise data on runtime in the Fog. We
propose a platform that will dynamical detect noise component
in the signal and reconfigure the filter devices to remove them.

II. BACKGROUND
A. CPS/IoT Ecosystem

A CPS/IoT Ecosystem is an heterogeneous system of sys-
tems that is combining two concepts, a Cyber-Physical System
and the Internet of Things (IoT). It provides the ability to

describe, perceive and interact with the physical environment
in distributed way and on a large scale. As mentioned above
we divide CPS/IoT Ecosystem in three scopes of operation,
based on their unique abilities to manipulate and communicate
data. Sensors and Actuators are devices in an immediate
proximity to the physical environment, where they can either
sense or manipulate the physical properties of a system. They
have limited computational resources and communication ca-
pabilities. The Fog or Edge is represented by devices that can
perform tasks such as real-time control or data aggregation and
filtering and communicate this data vertically and horizontally
with relatively low latency. They provide dedicated hardware
interfaces for sensors and actuators that allow real-time control
of these devices. The Cloud is providing computational and
storage resources to store the data in large scale and allow
complex analysis tasks that give us the ability to extract
valuable emerging insights into these physical systems.

B. Hardware Accelerators in CPS

The development of Cyber-physical systems requires mul-
tiple disciplines working together in a unified development
process. Physical systems need to be interfaced with computer
systems and vice versa. At the same time computer systems
need to be designed in the optimal way to ensure that proper-
ties like performance, dependability, power consumption and
cost satisfy imposed standards and stakeholder requirements.
As mentioned above, a computer system can be implemented
using different combinations of hardware: a) commercial off-
the-shelf hardware, or b) a dedicated hardware solution.

A commercial off-the-shelf hardware system provides all
advantages of a generic platform with extensive set of system
software and other resources (i.e., development tools) neces-
sary to develop an application in a fast and efficient way. Such
a system would be based on a standardized CPU and other
components not especially designed for all types of functions
present in a typical CPS (e.g., signal processing, complex
mathematical operations). In addition all these abstractions
implemented to improve user experience and improve devel-
opment create additional overheads on the system.

Dedicated hardware allows more efficient implementation,
with an obvious flexibility trade-off. Building custom hardware
is a completely different process from the one used to write
software programs. More complex and more time consuming,
harder to debug and very difficult to change and adapt.
Dedicated hardware has been used in applications with utmost
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importance on dependability, where the importance of reliable
operation outweighs the cost. Introduction of FPGAs (Field
Programming Gate Arrays) improved some of these properties
and allowed engineers to implement flexible and effective
hardware solutions. However, the design process and the
ability to enroll applications still remains far behind software
solutions on COTS hardware.

Hardware accelerated applications are systems where pro-
gram is executed on a CPU in a classical way and parts
of the program are implemented as hardware IP blocks and
outsourced on an FPGA or other dedicated device. The two
parts are seamlessly integrated with the software component
acting as a control part. Introduction of hybrid SoC platforms
(e.g., Xilinx Zynq, Altera Arria) creates even closer bond
between the main software and individual accelerators.

C. Adaptive Signal Filtering

Filtering and noise reduction of signals is an extensive
research topic in signal processing domain. However, the
field of adaptive runtime filtering is still a relatively novel
topic. Static runtime filters are applied in applications such as
live audio processing, and dynamic post-processing filtering
is used in audio post-production. In this paper, the terms
dynamic and adaptive filtering refers to an adaption of the
filter behavior according to a change in the input signal. E.g.
the filtered frequency range could be adapted or the filter type
could be switched when the input signal changes to achieve a
better filtering result. The usage of dynamic filters has many
advantages compared to static filters such as a better noise
reduction but therefore the filtering system has to recognize
the noise component of the input signal.

The problem with dynamic filtering is that it’s quite difficult
to analyse the input signal, adapt the filter curve at the same
time, and still guarantee a short latency. In this paper, we take
advantage of CPS/IoT Ecosystem and its different scopes of
operation that handle these tasks individually. That leads to a
reasonable reconfiguration time and a very short latency what
is essential for systems with high dependability requirements.
Although, due to the increasing power of computers in the last
years it would also be possible to achieve good results with
only one computation unit.

III. ADAPTIVE SIGNAL FILTERING PLATFORM (ASFP)

The proposed adaptive signal filtering platform is developed
over all three scopes of operation defined in Section II-A.
Further, it can be divided in the following stages: 1) Data
Acquisition, 2) Noise Detection and Classification, 3) Runtime
Adaptation, 4) Signal Filtering and 5) Data Storage. A sensor
would acquire noisy data from the environment, this signal
would be fed to the Noise Detection and Classification (NDC)
component. NDC analyses signal and sends the signal features
to the Runtime Adaptation (RA) component. Based on the
information received from NDC the RA component will
calculate the corresponding filter that will be delivered in the
form of the image on the Signal Filtering (SF) component.
The filtered signal would be then transferred into the cloud.

Figure 1 provides an overview of the computing stages and
the data-flow for the ASFP.

A. Noise Detection and Classification

Algorithm 1 Noise detection algorithm
Require: Signal X;,i € {1..n}
if FFT Available for X then
# Calculation of the mean value
sum = 0
cent =0
for i = 0;i < FFT.length;i + + do
if FFT(X;) > 0 then
sum += FFT(X;)
cnt =cnt + 1
end if
end for

avrg = sum/cnt

# Calculation of the lower cut-off frequency
for : = 0;i < FFT.length;i + + do
if FFT(X;) >= avrg then
lowerCutOffFrequency = i/2
break
end if
end for

# Calculation of the upper cut-off frequency
for i = FFT.length —1;i >=0;i — — do

if FFT(X;) >= avrg then
upperCutOffFrequency = i*2
break
end if
end for
end if

The applied Noise Detection Algorithm is defined on the ba-
sis of Fast Fourier Transformation (FFT) and it is implemented
on a microcontroller (MCU) platform specially designed for
signal processing. The MCU uses an FFT based algorithm
described in the Algorithm 1 to analyse the input signal that
is coming from the sensor node. Note that only amplitudes of
FFT are used. The process is performed in following steps:

1) The input signal is analysed by the FFT algorithm.

2) The mean value of all spectral lines of the FFT result is
calculated. For that only spectral values greater than O
are taken into account.

3) The lower cut-off frequency of the band pass is cal-
culated. Therefor the frequency of the lowest spectral
value of the FFT greater then the previous calculated
main value is taken. The iteration starts at the lowest
frequency (0 Hz) and goes up to the highest measured
frequency (22 016 Hz). If the value of a spectral line
is greater than or equal to the previously formed mean
value, it is assumed that this frequency already belongs
to the actual signal. This frequency is chosen and used
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Fig. 1. Adaptive Signal Filtering Platform (ASFP)

for further calculations. It is guaranteed that such a value
is found.

4) Similar to the previous step, the higher cut-off frequency
of the band pass is calculated. Here, the iteration starts
at the highest frequency and is gradually reduced. The
filtering should influence the actual signal as little as
possible. Accordingly, the obtained value of the lower
cut-off frequency is halved and that of the upper one is
doubled.

Algorithm 1 shows the fundamental basics of the Noise
detection Algorithm. It should be noted that the used FFT
function offers a resolution of 43 Hz.

B. Runtime Adaptation

Runtime Adaptation stage is implemented on a scale of
the Fog or Edge devices. It provides enough computation
resources to execute mathematical modeling tools used to
calculate filter properties and to generate configuration code
for the filter device. The cut-off frequencies received from the
Noise Detection and Classification node are used to calculate
filter coefficients that are further used to generate the code
and the configuration for the filter device. This step could be
performed in the cloud as well. However, if we were to use
this approach in a control loop the difference in a response
time between cloud and edge could be quite significant [2].
Thus, performing this task in the Fog is better suited for the
use case.

C. Signal Filtering and Cloud Storage

In the final two steps signals are filtered and then stored in
the cloud. The filtering is performed on the separate node in
the fog designed specifically for this purpose. In this work
we focused on two specific types of devices: FPGA and
Digital Signal Processor (DSP) Node. Runtime Adaptation
Node would calculate required filter parameters and compile
them into existing code templates for each device. Each device
is than directly flashed from the Runtime Adaptation Node.

Signal Filter Node is connected via communication gateway
via cloud, where the filtered signal is stored after filtering.
Alternatively, the data could be fed to another Fog Node, a
Programmable Logic Controller (PLC) or another embedded
platform performing a real-time control task. The stored data
can be further used for an offline analysis.

IV. IMPLEMENTATION

In the previous section we learned all necessary stages of
the proposed ASFP. In this section we describe implementation
specific details.

For the Noise Detection and Classification Node we used
a Teensy 3.6 micro-controller board [3]. It performs the
frequency spectrum measurements of the input signal using
FFT. The input signal is generated by function generator with
ability to randomise noise, and interfaced with the Teensy
board over a Audio Adapter Board for Teensy 3.0 - 3.6 [4]. The
audio adapter is used to increase the resolution (16 bit, 44.1
kHz) and improve the analysis capabilities [5]. Noise detection
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is performed using an algorithm described in Section III-A.
The latest eight cut-off frequencies calculated by the Noise
Detection Node are buffered in a local storage. The lowest and
the highest cut-off frequencies in the buffer are transmitted to
the Runtime Adaptation node on a request.

The Runtime Adaptation Node is implemented on a Win-
dows 10 machine. A tool-chain for mathematical modeling,
and code generation consists of: a) GNU Octave [6] used to
calculate filter parameters, b) Python [7] scripting and task
automation, c) Intel Quartus Prime Software Suite [8] FPGA
management and configuration, d) Sigma Studio [9] for DSP
programming and configuration.

We implemented Signal Filtering Node on two different
hardware platforms, namely an FPGA and DPS. The FPGA
approach uses the Altera DE2-70 FPGA Board [10]. To opti-
mize the power consumption the FPGA operates at 12 MHz,
and to minimize the quantization error, the on-board audio
chip (WMS8731) [11] works with a resolution of 24 bit, 96 kHz
(high-quality audio). This filter implementation strictly follows
the state space representation of the corresponding filter and
uses arithmetic floating point modules for the calculation. The
filter implementation is fixed while the filter coefficients are
configured on runtime via UART interface. The coefficient
transfer is performed using two buffers to ensure coefficient
synchronization. The buffers are implemented in DRAM to
optimize energy consumption.

The second approach uses the DSP platform to implement
Signal Filtering Node. For this purpose we used a Wondom
DSP board [12]. The onboard ADCs and DACs were config-
ured to operate with the same resolution of 24 bit and 96 kHz
as in the case of FPGA. The filter skeleton was implemented in
the Sigma Studio software. For the configuration, compilation
and flashing process Sigma Studio is also used, because it
allows writing automation scripts. The Sigma Studio script
reads the cut-off frequencies sent by the MCU, calculates a
new configuration for the DSP platform, and applies this new
configuration.

Both implementations enable the simultaneous sampling
and generation of two signals. This allows to process stereo
signals.

V. RESULTS AND DISCUSSION

In this section we will discuss the results in terms of filtering
capabilities, power consumption, latency and scalability. The
focus of the paper is to establish feasibility of CPS/IoT Ecosys-
tem to perform adaptive signal filtering on runtime. This would
ensure optimisation of data flow, bandwidth optimisation in
case of applications with limited communication capabilities
e.g., applications using narrow-band IoT networks. Further,
noise detection and classification can be used to detect faults
or deterioration in Quality of Service (QoS). Data analysis
is often sidetracked by noisy and redundant data. This effort
can be reduced significantly by using data pre-processing in
production stage.

A. Filtering Behavior

Figure 2 and 3 show how the filters response on a random
noisy input signals. At figure 2, a 100 Hz sine wave is applied,
and in Figure 3, the frequency of the input signal was set to
1 kHz. The test system reacts automatically to this change
and reconfigures the filters. Figure 3 shows the filter behavior
after the reconfiguration. It can be seen, that there’s still a
good noise reduction, but no reduction of the magnitude of
the output signal, which was a requirement. The upper part
of the figures compares the input signal (marked as blue or
darker) with the output signal (marked as red or lighter) when
no filtering is applied. The lower part compares the input
signal with the filtered output signal. The left side corresponds
to the DSP implementation and the right side to the FPGA
implementation. The ASFP successfully re-configures the filter
in both cases and manages to reduce noise with a significant
margin.

B. Power Consumption

For the theoretical calculation of the power consumption,
data sheet information and the PowerPlay - Early Power
Estimator [13] by Altera were used. The following table
compares the calculated power consumption of the FPGA
implementation with those of the DSP implementation under
standard conditions (regarding temperature and pressure):

’ Platform \ Power ‘
Altera DE2-70 FPGA Board | 235,23 mW
Teensy DSP Board 362,10 mW

We observe that the FPGA implementation has a power
consumption that is 35.04% lower than the DSP’s.

C. Response time and latency

The reconfiguration time of the two implementations is
currently around 100 ms. That means that it usually takes
around 100 ms for the filter instrument to respond to a
frequency change of the input signal with an adaption of the
filter curve. This value is strongly dependent on parameters
such as transfer rate and processing speed and can be subject
to optimization in the future work.

The latency here is defined by the sample and hold time
of the ADC and DAC and the response time of the filtering
systems. The response time of the FPGA-Implementation is
around two 96 kHz periods. This leads to a latency of around
20 ps.

D. Scalability

The effort to create the FPGA implementation was much
higher than the effort to create the DSP implementation.
Initially, the FPGA implementation requires more hours to
implement than the DSP. So FPGA is more suitable for larger
projects and DSP for faster prototyping. However, the FPGA
approach has significant advantage in scalability. While it
requires significantly less effort, the DSP platform is limited
with the predefined function blocks and less flexible toolchain.
If we consider dynamic reconfiguration as an use case, the
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FPGA approach and its toolchain are certainly better suited
for this purpose.

VI. RELATED WORK

In this paper we propose an approach for adaptive signal
filtering using FPGA and DSP computation platforms. The
authors of the paper [14] showed that other devices such as
graphics hardware (GPUs) could be used for real-time FIR
filtering of audio signals. In that paper, the filtering is also done
in the frequency domain, and not in the time domain. Their
main use case is the audio rendering of complex scenes, and
their work is evaluated on NVIDIA GTX 285 card providing
more than 200 channels with individual filters. In this paper,
only 2 channels with the same filter configuration are provided,
but can easily be expanded. The latency of the NVIDIA GTX
285 based test system is about 1 ms to 6 ms, which is slower
than the approach proposed in this paper. It takes about 20 us
for the signal reading, filtering and direct outputting. The IoT
communication overhead is not taken into account here. Paper
[14] also features a dynamic filter update rate in range from
40 Hz to 100 Hz, and in their test system, 64 channels are
update at once, which leads to a reconfiguration time of 10
ms to 25 ms. That is faster than in our approach. However, it
is not clear if they considered the analysis of the input signal
which takes most of the reconfiguration time, as shown in this

paper.

A novel and interesting approach to reduce noise in sig-
nals would also be the use of deep learning Als (Artificial
Intelligence). The authors of [15] introduced a Deep Neural
Network (DNN) - based framework for speech enhancement.
Despite the advantages of this approach, the realization is very
laborious, i.e. an extensive training set that encompasses many
possible combinations of speech and noise types has to be
designed. The authors used 104 different types of noise such
as restaurant and street noises and trained the system with
more than 100 hours of data.

Both works show efficient and novel methods to achieve
adaptive signal filtering, however their focus is on different
scope of operation with little to none consideration on re-
source utilization, or communication capabilities. The focus
of the work in this paper is signal filtering in domain of IoT
and industrial IoT, with the constraint of limited resources,
computational and communication capabilities.

VII. CONCLUSION

Number of IoT devices is rising almost with an exponential
rate. This new wave of devices is creating astronomic amounts
of data. Noise is an unavoidable effect of the data acquisition
process. It originates in different forms and from different
sources and it significantly reduces analysis capabilities of
data and increases effort [16][17]. Reducing noise is a sig-
nificant challenge in IoT due to non-standardized nature of
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IoT devices. In this paper we proposed the Adaptive Signal
Filtering Platform (ASFP) with two possible implementations
and showed how it can be applied in domain of IoT. We
showed that these approaches could be applied in a dependable
applications and also low effort hobby projects. In the future,
we will extend the number of filter approaches and investi-
gate feasibility of these implementations. It will also reduce
response times of the reconfiguration process. In addition to
aforementioned approaches, it would be interesting to compare
a Tensor Processing Unit approach with the existing two.
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