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Kurzfassung

Wir befinden uns am Anfang einer technologischen und sozioökonomischen Revolution, in
der Computerintelligenz Teil gewöhnlicher physischer Objekte wird, soziale Interaktionen
regelt und die menschliche Kognition im Allgemeinen beeinflusst. Wir betreten die Ära
der Smart World! Intelligente Geräte werden zu integralen Bestandteilen industrieller
Systeme, von Transport, Gesundheitswesen, Bauwesen, Chemie, Energie, Bildung und
Unterhaltung. Wir stehen vor einer rasanten Zunahme vernetzter Rechenknoten im
gesamten Spektrum industrieller Anwendungen und Allzweckanwendungen.

Der technologische Träger dieser Revolution ist die Synergie zwischen Cyber-Physischen
Systemen (CPS) und dem Internet der Dinge (IoT). Diese beiden Konzepte spezifizieren
Fähigkeiten von rechnergestützten Systemen, die physikalische Welt mithilfe von ma-
thematischen Modellen zu interpretieren, die physikalische Umgebung zu beobachten
und zu manipulieren sowie Informationen über verschiedene Einsatzbereiche hinweg zu
kommunizieren.

In dieser Arbeit definieren wir das Konzept des CPS/IoT-Ökosystems als eine hierarchische
Struktur, die Praktiken und Verfahren für die Modellierung, das Design, die Entwicklung,
die Ausführung und den Betrieb von intelligenten Systemen regelt. Wir unterteilen diese
Systeme in drei lose voneinander abhängige Betriebsbereiche: die Cloud, den Fog und
den Swarm.

Weiter, wir schlagen eine Sammlung von Methoden und Ansätzen vor, die ein zuverlässi-
ges Design, eine zuverlässige Ausführung und einen zuverlässigen Betrieb von CPS/IoT-
Ökosystemen ermöglichen. Insbesondere beginnen wir mit Methoden zur Gewährleistung
der deterministischen Ausführung von Aufgaben in sicherheitsrelevanten Anwendungen.
Als Erweiterung dieser Notiz schlagen wir eine Virtualisierungstechnik für Kommunikati-
onskanäle für Many-Core-Plattformen mit begrenzten physikalischen Schnittstellen und
eine sichere Kommunikationsarchitektur vor, die auf integrierten Architektureigenschaften
wie der zeitlichen und räumlichen Isolierung von Knoten beruht.

Das CPS/IoT-Ökosystem ist eine sehr heterogene Umgebung mit Hardware- und Software-
komponenten, die von mehreren Organisationen entwickelt und implementiert werden. Um
die Kohärenz zwischen verschiedenen Komponenten zu gewährleisten und die Komplexität
zu reduzieren, schlagen wir ein kontinuierliches Integrations- und Bereitstellungsschema
(CI/CD) für das CPS/IoT-Ökosystem vor. Darüber hinaus demonstrieren wir einen
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Runtime Verification (RV) Mechanismus, der die Grundlage für die Orchestrierung der
Dienstgüte (QoS) und die dynamische Rekonfiguration von CPS/IoT-Anwendungen
bildet.

Am Ende schlagen wir Methoden vor, um ein energetisch nachhaltiges CPS/IoT-Ökosystem
zu erreichen. Darüber hinaus haben wir ein Modell zur Vorhersage des Energieverbrauchs
im gesamten CPS/IoT-Spektrum mit Rückblick auf die Smart-World-Revolution definiert.
Um den durch smarte Geräte verursachten Energie-Overhead zu reduzieren, schlagen wir
eine alternative Stromversorgungsmethode für CPS/IoT-Sensorknoten vor.



Abstract

We find ourselves at the beginning of a technological and socio-economic revolution,
where computational intelligence is becoming part of ordinary physical objects, governing
social interactions and affecting human cognition in general. We are entering the era of
a Smart World! Smart devices are becoming integral parts of industrial systems, from
transportation, healthcare, construction, chemical, energy, education and entertainment.
We are facing a rapid increase of networked-computing nodes across the spectrum of
industrial applications and of general-purpose applications.

The technological carrier of this revolution is the synergy between cyber-physical systems
(CPS) and the Internet of Things (IoT). They specify the abilities that computational
systems need to possess, in order to interpret their physical world by using mathematical
models, to observe and manipulate their physical environment through sensors and
actuators, and to communicate information across different scopes of operation.

In this thesis we define the concept of CPS/IoT Ecosystem as a hierarchical structure,
that governs practices and procedures for modeling, design, development, execution and
operation of smart systems. We divide these systems in three loosely dependent scopes
of operation: the cloud, the fog, and the swarm.

Furthermore, we propose a series of methods and approaches that support the dependable
design, execution, and operation of CPS/IoT Ecosystems. In particular, we start with
methods ensuring the deterministic execution of tasks in safety constrained applications.
As an extension to these methods we propose a virtualization technique for communi-
cation channels for many-core platforms with limited physical interfaces, and a secure
communication architecture that relies on integrated architectural properties such as
temporal and spatial isolation of nodes.

A CPS/IoT Ecosystem is a highly heterogeneous environment with hardware and software
components that are designed and implemented by multiple organizations. To ensure
coherence between different components and to reduce complexity we propose a continuous
integration and deployment (CI/CD) scheme for CPS/IoT Ecosystem. Furthermore, we
demonstrate a runtime verification (RV) mechanism that provides a basis for quality of
service (QoS) orchestration and dynamic reconfiguration of CPS/IoT applications.

As final step in this thesis we propose methods to achieve energy-sustainable CPS/IoT
Ecosystems. Moreover, we defined a model to predict energy consumption across the
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CPS/IoT spectrum with retrospect to the Smart-World revolution. To reduce energy
overhead created by smart devices we propose an alternative energy consumption method
for CPS/IoT sensor nodes.

In conclusion, this thesis tries to seed methodological guidelines on how to build de-
pendable CPS/IoT Ecosystems for applications with various confidence requirements.
We want to understand the upcoming changes and reduce eventual effects of ad-hoc
development. To explain physical environments using mathematical models and to learn
new emerging behaviors using this massive incursion of new data and new insights.
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Preface

The purpose of this cumulative doctoral thesis is to motivate and summarize the research
work I have undertaken as PhD student at the CPS division of the faculty of informatics,
TU Wien. During this time, my work took place within several CPS/IoT research
projects, and it resulted in thirteen publications.

This thesis unifies all the individual research activities as a concerted work, that explores
how to build dependable systems within a CPS/IoT Ecosystem, and which shows how to
achieve this goal by using a structural hierarchy of computational systems. In short, the
individual topics explored in our published work, advance the design, development, and
operation of dependable CPS/IoT Ecosystems.

The thesis is constructed from two parts: 1) An introductory chapter that explains the
motivation and methodology behind the topic of dependable CPS/IoT Ecosystems, and,
2) The relevant publications sorted as chapters in the thesis. Individual works were
originally motivated and performed by different ideas and requirements. However, with
this work we want to highlight how they fit in a larger picture and how they contribute
to the holistic concept of a dependable CPS/IoT Ecosystem.

The diversity of topics, methods, and tools involved in this work is compelling. We
want both to introduce the readers to the important aspects of each publication, and to
establish an understanding of how these concepts contribute to the idea of a dependable
CPS/IoT Ecosystem. For this purpose, we devised a side-note method, which is created
from three types of notes, denoted by the questions Why?, What? and How?

Why? This note describes a motivational aspect of a subject, and it reminds the reader
of the importance behind the statement, paragraph, or section towards greater good.

What? Each of these notes identifies a requirement to be fulfilled by the CPS/
IoT Ecosystem or a challenge to be solved in order to establish a premise, or answer a
question on the necessary steps towards a solution.

How? These notes will identify concrete solutions for the problems and remind
users how these solutions correspond to given research questions.
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CHAPTER 1
Introduction

1.1 Motivation
Advances in science and technology in the last few decades have resulted in tremendously
complex systems that extend over different disciplines, physical and temporal scales, and
involve various individuals or organizations.

This thesis explores how cyber-physical systems are entangled within a complex web of the
physical environment, the Internet, and the ability to maintain specific safety and security
criteria. We define a CPS/IoT Ecosystem as a heterogeneous structure of hardware
devices and corresponding software components distributed over three intertwined scopes
of operation: the swarm, the fog, and the cloud (see Figure 1.1) [66].

CPS/IoT Ecosystems can be seen as a result of natural evolution, similar to the one
that happened for biological systems, where single cells merged over time into tissues/or-
gans/bodies to perform more complex tasks. The swarm of sensors/actuators, akin to
the human skin/muscle cells, produces the big (real-time) data through its sensors, and
consumes it with its actuators. This data is shared with the fog. The fog, akin to the
spinal cord, controls the sensors and the actuators in real time. It is capable of doing
mid-scale computational tasks and storing intermediate and temporary data for purposes
of aggregation or filtering. The cloud, akin to the human brain, possesses theoretically
unlimited storage and computation resources. It is here where the data is stored and
where planning and other offline tasks such as machine learning mainly happen.

By combining these individual scopes of operation we can increase the capability of
the system by a large margin, yielding new emerging functions and enabling new use
cases. These new features create new opportunities but also increase overall complexity.
A perfect example for this can be found in the automotive industry. The complexity
of automotive software has increased exponentially over the past 40 years (see Figure
1.2). As the systems get more complex and more conservative in terms of dependability,
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1. Introduction

Figure 1.1: The architecture of a CPS/IoT Ecosystem. (Right) Three scopes of operation
Cloud, Fog (Edge), Swarm (Sensors/Actuators). (Left) Time scale for the message
exchange and reaction. Abbreviations: Artificial Intelligence (AI). Business Intelligence
(BI). Enterprise Resource Planning (ERP). Data-Base (DB). Wide Area Network (WAN).
Local Area Network (LAN). Programmable Logic Array (PLC). Communication Gateway
(GW). Micro-controller (µC). Input-Output (IO). Round-Trip Time (RTT).

these tasks are getting more difficult. The higher-dependability standards are essential
as we wander from general-purpose applications towards industrial safety-constrained
applications, such as car-2-infrastructure or industrial control.

Why are these new technologies necessary in already functional systems? We can look
at this from two perspectives: Functional and Economical. In automotive industry, for
example, these new features significantly improve the cars in terms of safety, convenience,
and comfort. Generally, the functional motivation for this revolution can be summarized
in the following statements: a) Increase general functionality and capabilities of a system,
b) Increase system efficiency, c) Achieve emergent insights into a system.

If we observe this change from an economic perspective, this revolution creates brand-new
markets, innovation in business models, reduces efforts and overheads, and enables a
tighter bond between management and the field level of operation. For example, using a
continuous integration and delivery methods can save up to 78% of development costs
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1.2. Problem Statement and Research Gap

[58]. By applying advanced machine learning methods on sensor data collected from the
physical environment of a machine it is possible to improve failure detection of robust
mechanical systems by a significant margin, thus reducing maintenance and eventual
downtime costs [57].

To conclude, the rise in complexity is inevitably advancing, and it is arguably justified.
This raises the question: "How can we maintain the dependability of these systems despite
the increase in complexity?" This thesis proposes a series of technologies that support
the development of some of the missing pieces in the CPS/IoT puzzle.

Figure 1.2: Software complexity in automotive sector, in terms of lines of code (LoC).

Why? A Smart World will require an enormous number of devices over next decade. An
ad-hoc implementation of the smart world could potentially lead to chaos. It could result
in an incomprehensible complexity, one which could endanger safety-critical industrial
systems, economic institutions, and personal privacy.

1.2 Problem Statement and Research Gap
The three scopes of operation within a CPS/IoT Ecosystem, are fully capable of operating
individually. In fact they have been observed and explored as separate entities in the past.
However, with an increasing ability to analyze and understand our physical environment,
new methods for developing efficient CPS are emerging. A necessary requirement for this
new paradigm is constant communication, both horizontally and vertically. Horizontal
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1. Introduction

communication happens within a scope of operation, among components or devices,
through a bus or LAN. As a vertical hierarchy, a CPS/IoT Ecosystem establishes a
functionally relevant vertical communication, from the tiniest device to the Cloud.

The design and development process for each scope of operation is different from the
others; they are loosely integrated, with numerous gaps in-between. This work explores
the ability of these systems to facilitate dependability, both as an assembly of its defining
properties, and also through a perspective of individual properties.

The dependability of computing systems was initially defined either as "the ability to
deliver service that can justifiably be trusted" or as "the ability to avoid service failures
that are more frequent and more severe than is acceptable" [28]. It is commonly accepted
that the dependability of a computing system is determined by six attributes: availability,
reliability, safety, integrity, and maintainability [28]. The availability attribute can be
described as a readiness of the system to deliver correct service. The reliability attribute is
a probabilistic measure of the system’s ability to deliver correct service in a certain period
of time. The safety attribute is augmenting reliability in terms of avoiding catastrophic
failures that could result in a loss of a life, environmental or economic damages. Integrity
is an attribute that guarantees that a system is not improperly or maliciously altered.
Finally, the ability of a system to be properly repaired or modified in its life-cycle is
referred to as maintainability.

Figure 1.3: Dependability attributes.

More recent definitions of dependability
include security as an attribute that com-
prises integrity and confidentiality [70][28].
This means that dependability and secu-
rity largely overlap, and in the extension
of the text we will assume dependability
encompasses security.

Examples for dependable systems are tra-
ditionally drawn from industries with a
strong safety, economic or environmental
impact in case of catastrophic failure, such
as aerospace, avionics, railway or automo-
tive [49]. However, in recent years the
scopes of operations of these systems have
expanded into other domains, such as up-
dates over the internet, multimedia, and
communication with civil infrastructure.

Automotive vehicles are increasingly linked
with cloud servers over the Internet. They
perform tasks such as monitoring, multimedia streaming, and even over the air updates
[78]. Figure 1.4 shows the gradual evolution of on-board architectures in the automotive
sector, and the importance of connectivity with the Internet and infrastructure. Another
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1.2. Problem Statement and Research Gap

Figure 1.4: Evolution of on-board architectures in the automotive sector [44].

example is the industrial Internet-of-Things (IoT), where entire industrial processes are
interlinked over multiple scopes of operation [46].

In hindsight, the dependability definition can be further extended to include attributes
such as performability [84], sustainability [39], testability [84], explainability [40], scalabil-
ity [72] and reconfigurability [86]. One common conclusion is that these attributes address
issues that emerge as a result of overuse or extended usage time, interconnection with
other systems, or application in environmentally sensitive settings. The dependability of
computing systems needs to be adapting to emerging behaviors and system structures
(e.g., IoT, quantum computing). With this in mind, we would like to revisit dependability
considerations, standardization, and best practices in the domain of CPS/IoT Ecosystem.

As defined in Section 1.1 of the document we assume that a CPS/IoT Ecosystem (see
Figure 1.1) can be divided in three hierarchical scopes of operation: the cloud, the fog,
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1. Introduction

and the swarm. Each individual system within this hierarchy is defined by a set of
different structural, resource, and functional properties. Their purpose and application
will determine the required level of dependability or standard conformity that needs to
be achieved. For example, the same functionality can be achieved with multiple devices,
but only certain devices are certified for a certain level of dependability or security.

Further, a CPS/IoT Ecosystem is determined by its intended function, and that is to
establish a reliable connection to the physical environment, collect data, analyze it, and
learn emerging behaviors that can be used to increase efficiency or ensure entirely new
functions of a certain system. On the other hand, this increases the overall risk of
emerging faults, errors, and failures.

The level of co-dependency of individual components yields new emerging behaviors
that are often not considered in the design of the individual components and their
failure model. Thus, when we explore dependability we need to consider how actions of
individual components resonate on the global scale of a CPS/IoT Ecosystem. Linking
systems such as vehicles to the Internet increases security risks that can have a significant
impact on the safety and dependability of the system in general [37].

In conclusion, we would like to highlight challenges that are developing with the evolution
of computational systems in terms of dependability:

• Categorize dependability requirements of CPS/IoTs, as we need to adapt standards
and best practice methods to include emerging new risks.

• Ensure dependability not only within the scope of an individual component, but
also within the scope of the entire system.

• Re-evaluate the dependability model in use, and explore new properties, for example
sustainability, which are becoming more important with the increase in connectivity
and the quantity of computational units.

We will expand on these topics in Section 1.3 as we define specific research questions.

Why? In this section we argued for the necessity of dependable COS/IoT Ecosystems
through examples and hinted to the gaps in the research on related topics.

1.3 Aim of the Thesis
This thesis proposes a set of research questions highlighting CPS/IoT properties required
for dependable operation. We emphasize individual research questions that identify
roadblocks on this path, in addition to the state-of-the-art technologies that can be used
to mitigate these challenges, and create emerging concepts. Together, they create a
baseline for dependable design, development, and operation of CPS/IoT applications.

RQ1: How to build dependable hardware architectures for CPS/IoTs?

8



1.3. Aim of the Thesis

Table 1.1: Mapping research questions to dependability attributes.

Attributes RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7
Testability
Sustainabilty
Performability
Explainability
Scalability
Reconfigurability
Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Multi-core commercial off-the-shelf (COTS) processors are designed for optimal perfor-
mance in systems with no critical consequences (s.a., death, economic loss) in case of
failure. Primitive non-deterministic scheduling and other similar features make the multi-
core architectures not viable for safety-critical applications, if used in high-performance
multi-core modes of operation. Ensuring dependable execution while maintaining accept-
able performance capabilities is a rather difficult challenge.

RQ2: How to achieve virtualization of hardware resources in time?

A deterministic multi-core processor architecture has limited interface access due to
safety and security requirements. Thus, individual cores may run into race conditions for
hardware resources if not clearly divided between individual cores.

RQ3: How to enable dependable mixed-criticality integration in many-core
architectures?

Deterministic multi-core systems provide excellent conditions for safety constrained
systems. However, state-of-the-art safety constrained systems are increasingly more
entangled with non-critical systems. The non-critical systems commonly require higher
performance factors, and they communicate with safety components.

RQ4: How to achieve a transparent and secure communication architecture
on integrated MPSoC?

Deterministic MPSoCs are built upon the notion of strictly isolated components, includ-
ing processing and network components. This baseline can be used to achieve secure
communication both on and off the chip with little to no overhead on application nodes.
We propose a secure channel architecture where secure information is completely hidden
from the application cores, and all security services are offered by a trusted secure core.

RQ5: How to conceptualize synergies between CPS and IoT?

9



1. Introduction

CPS is a computational system that interacts closely with the physical world either
through perception or manipulation. A CPS is commonly represented by a control
loop monitoring a physical system; based on the model of that system, it creates
decisions that control it. IoT is a networking concept that creates a link between CPSs
independent of its size or function. These systems are composed together in system-
of-systems overlapping computing and communication infrastructure. This results in
a highly-complex structure of heterogeneous devices and software components, that is
progressively harder to interpret, grasp and analyze. The question that arises is how can
we hierarchically structure CPS/IoTs in a way we can understand this composition to
the point that it can be used in applications requiring a high level of confidence?

RQ6: How to ensure QoS through run-time verification and monitoring on
the entire scale of operation of a CPS/IoT Ecosystem?
As the system gets more complex we need to apply automation and reduce manual
effort in development and maintenance, in order to avoid faults caused by human error
or process desynchronization. This would increase the overall ability to keep a system
stable for a longer periods, and significantly reduce downtime. How can we increase QoS
by reducing manual effort in development and using exiting infrastructure supporting
run-time verification methods onto these processes?

RQ7: How to achieve sustainable CPS/IoT Ecosystems?
The energy component is a significant cost overhead in industrial production. The
introduction of swarm-like systems with billions of devices makes this cost overhead to
an important and ubiquitous problem for the industry. Reducing the energy footprint of
computational devices would increase their overall dependability as they would ultimately
be less of a liability economically and environmentally speaking.

1.4 Publications
In order to give an overview of the publications relevant to this thesis we list them and
provide a short name that will be used in the remainder of this document as a reference.
We also provide a short discussion about the author’s contributions to the individual
papers. Publications marked with * are included in the thesis.

I (ACROSS MPSoC) The ACROSS MPSoC - A New Generation of Multi-Core
Processors designed for Safety-Critical Embedded Systems / C. El Salloum, M.
Elshuber, O. Höftberger, H. Isakovic, A. Wasicek, Talk: DSD 2012 (Euromicro
Conference on Digital System Design), Cesme, Izmir, Turkey (invited); 2012-09-05
- 2012-09-08; in: "2012 15th Euromicro Conference on Digital System Design (DSD
2012), Proceedings", IEEE Computer Society, (2012), ISBN: 978-1-4673-2498-4; 105
- 113 [88].

II (ACROSS MPSoC (Jurnal)) The ACROSS MPSoC - A new generation of
multi-core processors designed for safety-critical embedded systems , C. El Sal-
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1.4. Publications

loum, M. Elshuber, O. Höftberger, H. Isakovic, A. Wasicek, Microprocessors and
Microsystems, 37 (2013), 8, Part C; 1020 - 1032 [47].

III-* (Secure Channels) Secure Channels in an Integrated MPSoC Architecture /
H. Isakovic, A. Wasicek / Talk: 39th Annual Conference of the IEEE Industrial
Electronics Society, Wien; 2013-11-10 - 2013-11-13; in: "Industrial Electronics
Society, IECON 2013 - 39th Annual Conference of the IEEE", (2013), ISSN: 1553-
572x; 4488 - 4493 [67].

IV-* (Virtual CAN) Virtual CAN Lines in an Integrated MPSoC Architecture, A.
Wasicek, O. Höftberger, M. Elshuber, H. Isakovic, A Fleck, Talk: 17th IEEE
International Symposium on Object/Component-Oriented Real-Time Distributed
Computing (ISORC), Reno, Nevada, USA; 2014-06-08 - 2014-06-12; in: "Proc. of
the 12th IEEE International Conference on Industrial Informatics", (2014), ISSN:
1555-0885; 158 - 165 [93].

V-* (Hybrid MPSoC) A heterogeneous time-triggered architecture on a hybrid system-
on-a-chip platform / H. Isakovic, R. Grosu, Talk: 2016 IEEE 25th International
Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA; 2016-06-08
- 2016-06-10; in: "IEEE 25th International Symposium on Industrial Electronics
(ISIE)", IEEE, (2016), ISSN: 2163-5145; 244 - 253 [63].

VI (EMC2 Project) The EMC2 Project on Embedded Microcontrollers: Technical
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1.5 Methodology
In the scope of this thesis we will elaborate the main methods for achieving dependable
CPS/IoT Ecosystems, provide an extensive overview of the state-of-the-art of scientific
and industrial literature, and highlight the importance of our research and relevant
publications towards this goal.

The previous sections introduced CPS/IoT Ecosystems as complex hierarchical structures
establishing basic causal relations among its structural subunits. Individual components in
CPS/IoT Ecosystems are designed and implemented as independent units. Their functions
have causal effects on the other components and their basic properties. The notion of
CPS/IoT Ecosystem follows the definition of CPSoS as mentioned earlier; however, it
expands the typical CPSoS definition further from the perspective of uncertainty and
entanglement between components with higher requirements on functional safety and
components with low or no-requirements for functional safety.

1.5.1 General Requirements
In order to understand the requirements behind dependable CPS/IoT Ecosystems, it
is necessary to explain the recent history in the development of cyber-physical systems
applied in manufacturing, automotive and other industrial sectors with strict functional
rules and regulations. Initiatives such as Industry4.0 [8] from the German public and
industrial authorities proposed radical revolution of industrial manufacturing systems
towards functionally smarter and more efficient systems.

This revolution of industrial systems is supposed to create new values, business models,
and improve overall social and economic benefits [69]. Another example where the
industrial evolution is pushing the boundaries of technological and scientific development
of cyber-physical systems is coming from the automotive industry. In particular, the
introduction of autonomous and smart driving creates major challenges and yields
extensive changes in the way how cars and their computer systems are implemented.

These new applications require that we transfer progressively more safety functions to
fully automated systems (e.g., lane keeping, adaptive braking). They also require us to
continuously increase the number of interconnections between local components and the
outside world. For example, in the factory we are connecting in-factory systems with
external software such as resource planning, accounting, and data analysis. The vehicles
are connected to the surrounding infrastructure, or they are using the connection to the
internet or smartphones to implement a smart in-vehicle instrumentation.

In order to achieve all these new features, systems need to be augmented by increasing
connectivity, interoperability, and ubiquity while maintaining functional safety, security,
and resource efficiency. To achieve the goals of Industry40, smart industrial systems must
not only reach new levels of functional intelligence, but also improve on standardization
and create new reference architectures, complexity management, and integration with
other fields of operation such as supply chains, work organization and training, and regu-
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latory supervision. Such systems must also increase overall connectivity by establishing
broadband infrastructure for industry [69].

The evolution of cyber-physical systems and their ambient applications yields new tech-
nologies, methods and tools, under standardized guidelines and regulations. These
systems were defined by properties and requirements proposed in the traditional de-
pendability model [28]. However, new features and functions are producing emerging
properties that are giving us a more enhanced description of the system.

What? The society constantly imposes new requirements on industrial systems; these
trends are also reflected in computer systems. The computer systems need to be designed
in a way that allows them to be easily adapted or upgraded to meet emerging needs of
industry and society.

Architectural Significant Requirements (ASR)

The success of a system is pre-conditioned with the requirements that describe its function,
behavior, and relations to other systems. The requirements that determine and shape
the architecture of the systems can be defined as architectural significant requirements
(ASR) [41]. In Section 1.2 we introduced a standard dependability model extended with
additional attributes that emerged over time and that influence the systems ability to
ensure a dependable operation.

In the scope of our work we observed emerging system properties that are going beyond
the traditional dependability model and are vital for a dependable CPS/IoT Ecosystem:

• Mixed-criticallity the ability of the system to combine functionalities with high
importance ("critical") for the correct operation of the system with others that might
not be directly connected to the system’s safe operation [33]. For example, to allow
smart in-vehicle instrumentation that can manage both safety-critical functions
and non-critical functions it is necessary to enable novel hardware architectures
capable of separating these functions in space and time, in order to reduce possible
interference to an absolute minimum [47].

• Virtualization is another property that is not included in the traditional model of
computer-system dependability [28]. However, it is essential for most state-of-the-
art computer systems. It is the function that allows a system "to divide resources
on multiple execution environments, using one or more concepts or technologies"
[81][91]. Use of virtualization as a means for achieving spatial isolation between
components is an essential requirement in safety- and security-constrained systems.

• Quality-of-Service (QoS) stems from the communication aspect of computer
systems, and it originally referred to the ability of the network to provide a service
under specified requirements [42]. It is regulating a collection of properties such as
throughput, latency, jitter, etc. The concept extended further in application design,
and it became exclusively prominent in Internet applications, such as multimedia
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streaming [25]. Industrial applications and the applications with safety constraints
such as automotive, are strictly defined by their specifications. The satisfaction of
these conditions is determining their QoS level. This is a collection of requirements
from communication, hardware behaviour, energy consumption, software execution
matrices, and resource management. A QoS management component or service is
an essential part of any state-of-the-art industrial software framework [26].

• Sustainability is a property that surpasses its definition as a technical requirement.
Moreover, it can be observed as a global socio-economic challenge [36]. We can
observe sustainability from multiple aspects, such as: a) technical or longevity of
the system; b) environmental or impact of on a surrounding ecosystem; c) economic
or ability to maintain positive financial balance; d) individual or the ability of an
entity to progress and develop in an environment; e) and social that propagates
communication between individuals and organizations and their ability to resolve
conflicts potential disputes [35]. In the scope of CPS/IoT Ecosystem it is necessary
to reflect on two requirements, reducing power consumption and increasing the
operational lifespan of each device, software or system in general.

• Security is not a novel or emerging property in terms of definition and function.
It is included in traditional dependability [28]. Moreover, it is one of the properties
with a largest set of requirements and highest rate of change. In the scope of
a CPS/IoT Ecosystem where we have a high number of heterogeneous devices,
software components and communication protocols it is extremely difficult to
envision a unified solution satisfying all security requirements [59]. There are two
main aspects when observing security in CPS/IoT Ecosystem. The first is local,
where we need to establish cyber-resilience of each individual component [77]. The
second aspect is global, where we need to ensure security frameworks for secure
design and implementation of CPS/IoTs [29]. In conclusion we state that a secure
design process starts with a secure design of hardware devices and ends with the
security-proofing the application, both from cyber and physical aspect.

What? We identified the above-defined properties as essential to achieve certain aspects
of dependability in a CPS/IoT Ecosystem.

Quality Assurance and Standardization

Standards are means of regulation compiled in a document and approved by authorized
experts as a rule or guideline to establish a certain level of quality, order, or functionality
for an entity or organization in a given context [27]. Standards provide three types of
information: a) Normative, or prescriptive measures one needs to take to conform to
a standard, b) Informative, or descriptive knowledge that supports conceptual under-
standing of the topic, and c) Requirement, which are the criteria needed to satisfactorily
comply with a standard [6].
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Figure 1.5: The extended model for dependability with emerging properties.

Standards are characterized depending on the domain of application, intended use, and
geographical and social circumstances. International standardization bodies that are
relevant to CPS/IoT Ecosystems are:

• International Electrotechnical Commission (IEC) [9],
• International Organization for Standardization (ISO) [10],
• International Telecommunication Union (ITU) [11],
• Institute of Electrical and Electronics Engineers (IEEE) [19],
• Association Connecting Electronics Industries (IPC) [23],
• International Society of Automotive Engineers (SAE) [17], and
• World Wide Web Consortium [21].

These organizations provide regulations and guidelines for electronic systems, telecom-
munication and computer systems on a global scale. Different regions or countries will
have their respective standardization bodies e.g., National Institute of Standards and
Technology (NIST) [13] or European Telecommunications Standards Institute (ETSI) [6]
where standards can somewhat differ from international norms.

Standards relevant to CPS/IoT Ecosystems are mainly inherited from other domains. A
major component are systems for embedded systems and development. Further, they
are strongly influenced by the application domain where they are deployed, especially
regarding the safety aspect. Table 1.2 shows a collection of standards that in one way or
another support dependable design and implementation of CPS/IoT.

There is an ongoing initiative to standardize IoT in particular, with three standards that
would regulate dependability norms, guidelines, and requirements for IoT systems. The
standard marked as IEEE P2413 [7] is dealing with architectural frameworks for IoT.
Further, the standard IEEE P1451 [14] works on the harmonization of IoT devices and
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Figure 1.6: The mapping of the publications included in the thesis to the basic depend-
ability attributes.

systems. The standard under designation IEEE P2510 [15] is providing guidelines for
establishing quality of data sensor parameters.

In addition to IEEE standards for IoT, there are other activities that are working on
regulating CPS/IoT such as the Framework for Cyber-Physical Systems published by
NIST [53], or IoT-Enabled Smart City Framework by IES [38].

All these initiatives are working towards a common goal, which is to establish a stan-
dardized basis for dependable design and implementation of CPS and IoT applications,
which we characterize as CPS/IoT Ecosystem.

What? Standards provide us with normative, guidelines and requirements that if applied
will produce a guarantee of achieving certain properties. We are aiming towards CPS/IoT
Ecosystems that are conform with standards.
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Table 1.2: International standards that support dependable CPS/IoT Ecosystem [27]

Organization Standard Domain Topic
ISO/IEC 29164 Biometrics Embedded Framework

ISO/IEC 25000:2005 Software Engineering Software Quality
Requirements and Evaluation

ISO/IEC 9496 Embedded Systems CHILL Language
ISO/IEC 18372 Hardware Design RapidIO Chip Interconects
ISO/IEC 62061 Industrial machines Safety Machinery
ISO/IEC 26262 Automotive Safety
ISO/IEC 9126 Software Engineering Software Quality

IPC 6011-6018 Circuit Boards Quality of PCBs
IPC 9151 Circuit Boards Process Quality
IPC 9194, 9199 Circuit Boards Statistical Process Control (SPC)

IPC 4811, 4821, 2316, 7091 Embedded Systems Design and production
guidelines for embedded PCB

IPC 7090-7095 Embedded Systems PCB Packaging

IEC 61508, 61511, 61513 Control systems
Safety,

Industrial Systems,
Nuclear Industry

IEC 62278 Railway Safety
IEC 62304 Medical Safety

IEEE/IEC 62014 System On Chip Quality of electronics and software
IEEE 1500 Embedded Systems Testing and integration

IEEE 1687 Embedded Systems
Access and control

for instrumentation in
semiconductor devices

IEEE 1003 Information Technology Operating System, Interfaces, Applications
IEEE 1450 Digital Design Testing Language

IEEE 802 Communication Protocols, interfaces,
synchronization

SEA J2356 Distributed Systems Model
SEA J2640 Embedded Systems Software Design Automotive

SEA AS5506 Embedded Real-Time Systems Architecture Analysis
& Design Language (AADL)

1.5.2 Methods
The scientific method consists of a constant investigation of existing scientific theories
and publishing of new theories [51]. It requires a continual assessment of testing methods
and ongoing formulation of new tests that may provide additional insights on existing
knowledge or create new knowledge [5]. In this work we adhered to this approach by
starting our research with an evaluation of existing scientific works, creating a hypothetical
baseline with applicable assumptions, creating experimental frameworks for testing and
evaluation, and finally proposing new theories or augmenting existing ones.

Three predominant methodologies in computing research and related disciplines are: a)
Theoretical methodology, which builds on mathematical foundations and explains the
computing systems through logical reasoning and proofs; b) Experimental methodology,
which relies on empirical evaluation of phenomena through series of tests and observa-
tions, c) Computer Simulation methodology, which studies phenomena by creating their
respective computer models and simulating their behavior in various environments [51].

Works presented in Chapters 2-8, and other works presented in Section 1.4 are predomi-
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Figure 1.7: An overview of research disciplines within CPSoS in relation to publications
included in the thesis.

nantly accomplished by applying experimental methodology. However, as we can observe
in Chapters 7, 8 or in publications [88], [47], [86] we combined theoretical methodology
with experimental evaluations. In the work proposed in [54] we proposed a simulation
environment that strongly supports a computer simulation methodology approach.

Further, we conducted a case study for CPS/IoT Ecosystem based on a real-world
application [55]. In addition, we created a survey of innovative hardware technologies
for mixed-criticality integration [65], including another important method of scientific
research in our research background.
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The work presented in this thesis covers five different fields of research within computer
science (see Figure 1.7):

• Hardware - focusing on research and development of hardware architectures or
components, in the extent of 40% of published works.

• Software - with a focus on development and evaluation of system software, mid-
dleware and applications, estimated to around of 30% work completed.

• Case Studies and Surveys - transferring research ideas into real-world scenarios
and collecting fundamental information on existing research and technologies as
the basis for the works presented in our publications. We estimate the extent of
this research at 15%.

• Models and Simulation - creating relevant simulation frameworks for CPS/IoT
Ecosystems and proposing relevant models to create predictions and assumptions.
This covers about 10% of the presented works.

• Energy and Sustainability - describes research on energy aware systems and
methods for conservation of energy in computing systems. This topic is presented
in 5% of the work completed.

Using a standardized methodology and scientific method provides us with generic guide-
lines on how to organize and execute a research task. However, it doesn’t tell us which
tools to use to achieve this goal. In the following section we will introduce the most
important concepts, frameworks, and tool-sets used in the research for this thesis and
their relation to the notion of dependable CPS/IoT Ecosystem.

How? In this section we identify methods that can be used to achieve above defined
goals and requirements.

1.5.3 Architectural Concepts and Frameworks
In the following section we will identify architectural concepts that are supporting the
notion of dependable CPS/IoT Ecosystem. These systems are as mentioned before highly
complex with an increasing trend, so they are built with a high grade of heterogeneity,
both vertically across the operation layer spectrum (i.e., cloud, fog, sensor) and also
horizontally within each operational layer. This is necessary to achieve the full system
comprehension for a certain level of dependability. In the work presented in later chapters,
we apply certain state-of-the-art concepts, tools, and methods that are designed to increase
the degree of comprehension when building CPS/IoT Ecosystem.

How? In this section we specify architectural concepts, hardware and software frame-
works to achieve dependable design, execution and operation of CPS/IoT Ecosystem.

20



1.5. Methodology

Service-Oriented Architecture (SoA)

A Service-Oriented Architecture (SoA) approach comprises a system design and imple-
mentation with a focus on encapsulating functions in services which can be exchanged and
applied over common interfaces [83]. An SoA approach supports extended dependability
properties such as reconfigurability and interoperability, and can even be aligned with
state-of-the-art standards for industrial automation (e.g., IEC 61499) [43]. Finally, an
SoA approach is highly flexible, and we can design services from a hardware layer up to
the application level as can be seen in the following two examples.

The work we present in Chapters 2, 4, 3, 5 is based on the ACROSS SoA multiple system
on chip platform (MPSoC) [88], and earlier work on GENESYS architecture. [80]. They
define a set of requirements for dependable distributed embedded systems which can
be applied in multiple industrial domains. It propagates abstraction, partitioning, and
segmentation as means of reducing complexity. An abstraction considers dividing the
system into different integration levels: system, device, chip. A partitioning ensures strict
separation between components on each level of abstraction, and a segmentation reduces
task complexity by dividing a complex task in a series of simpler jobs. The services
can be divided as: a) core services or essential services, b) optional services or system
functions that are not essential in every instance, c) application-specific services. The
perspective of the system services can be local and confined to a single component, or
global and available to the whole ensemble.

Furthermore, the work presented in Chapter 7 is implemented using the Arrowhead
framework [46]. The Arrowhead framework is designed for automation of IoT systems
and their secure and dependable application in industrial systems. It is conceptualized on
the notion of local clouds. Applications and systems are automated using a multi-cloud
approach, where each cloud maintains a set of services that can be operated locally or
exchanged with other clouds using a secure connection. Each cloud is designed around a
set of core mandatory services and application-specific services.

A CPS/IoT Ecosystem is a heterogeneous and complex structure. In order to apply it in
systems with strict safety and security constraints we need to increase the explainability of
the system and ensure temporal and spatial isolation of components. Use of standardized
interfaces as a binding element reduces complexity and provides composability, the ability
to add and remove components without custom integration requirements [80].

How? We used SoA architectures to create a basic environment for dependable CPS/IoT
Ecosystem. It is an important part for answering Research-questions RQ1 - RQ6.

Hardware Acceleration and MPSoC

A common approach to building cyber-physical systems (CPSs) is a homogeneous hard-
ware platform either with software running on COTS hardware or custom-built dedicated
hardware. However, in recent years the trends are evolving towards more heterogeneous
and more flexible solutions. This revolution is driven by two major paradigm shifts:
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a) Building CPS as a single multidisciplinary process rather than an ambiguous set of
independently created systems, and b) Internet-of-Things (IoT), an enormous collection
of independent systems operating in isolation or in groups over the internet.

Major challenges behind these paradigm shifts include: "retirement" of single core chips,
performance increase for rapid increase in additional functionality, reduction in size,
energy consumption, and security. For years now single-core CPUs have been replaced
by multi-core variants due to the obvious advantages of increased performance, reduced
power consumption, etc. In consumer electronics this change has been adopted easily.
However, in industrial applications, especially ones with safety related requirements, this
change is much more challenging to implement. Certification of devices without clear
separation between different operational units is an extremely difficult task.

Field Programmable Gate Array (FPGA) platforms created a huge impact on server
and data center technology already [85]. With hybrid SoC platforms the advantages of
FPGA flexibility and performance can be also transferred in other applications ranging
from small IoT devices (e.g. ZynqBerry [52]) to applications complex as Advanced Driver
Assistance Systems (ADAS) [87][4].

Hardware accelerators are becoming a well-established tool in the scope of CPS/IoT
Ecosystem due to their flexibility, and the ability to support both essential dependability
requirements and the extended requirements that we defined in Section 1.5.1.

A System-on-chip represents a fully functional system that is contained within a single
chip, including all of its core components: processor, memory, and peripherals on-board
[50]. This means that we could have a full system working as hardware accelerators or
components for dedicated tasks, or with a certain level of dependability.

A hybrid multiple system-on-chip (MPSOC) approach can be observed in Chapters 4, 5,
where we enable mixed-criticality integration through separation of functions. The safety
functions were performed on an FPGA-based custom-built components, and non-critical
functions on a loosely coupled COTS-based system (i.e., ARM).

Further, hardware accelerators can be also an efficient Fog device within a CPS/IoT
Architecture, where it can be used as communication hub or data analysis system.
We demonstrated how to implement FPGA based re-configurable nodes for adaptive
signal processing using a similar approach [62]. Hardware accelerators are used from
cloud servers, over network infrastructure, to data analysis in fog. In addition to clear
performance advantages they also support energy-sustainable development with clear
advantage over CPU or GPU solutions [74], [76].

How? We used hardware accelerators on an FPGA basis and MPSoCs as a platform for
implementation of dependable hardware architectures. This is the cornerstone technology
for Research-questions RQ1 - RQ4.
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Time-Triggered System-on-Chip (TTSoC) Architecture

Dependable systems include safety-critical systems, or systems where failure to properly
function can result in catastrophic consequences. Safety-critical systems have strict
deadlines for communication and execution of tasks [70]. The time-triggered architecture
is a framework for the design and implementation of large dependable deterministic
systems [71]. TTSoC represents a component methodology that integrates the design
principles of an SoC with a deterministic time-triggered framework [82]. It allows the
implementation of distributed systems in a fully deterministic way.
In our work on the ACROSS [47] architecture we demonstrated how a high level of
temporal and spatial determinism can be achieved using a TTSoC enabling the integration
of multiple safety critical systems or functions on a single chip. The temporal and spatial
determinism can be also characterized as an essential feature when building mixed-
criticality applications as described in Chapters 4 and 5.
Time-triggered architectures are designed for a high level of composability [71]. This is a
property that enables systems to expand and compose into larger systems without any
side effects [82]. This allows systems to expand, reduce, and reconfigure such that the
eventual faults at the interfaces between individual components are contained.
The time-triggered paradigm is not exactly reserved for highly critical systems and
applications. The IEEE 802 standard [12] is constantly expanding and introducing
"time-triggered" features. This brings time-sensitive communication into the standard
Ethernet communication infrastructure. This will provide a necessary determinism. This
will reduce need for proprietary hardware or software and increase overall interoperability.
In conclusion, the time-sensitive communication infrastructure is an essential component
of a dependable CPS/IoT Ecosystem.

How? Certain types of systems require extreme determinism and the time-triggered
communication architectures are designed to facilitate this kind of determinism. TTNoC
is an on-chip communication technology that enables solutions for RQ1-RQ4.

Runtime Verification and Monitoring

To establish the confidence in a computational system and increase its credibility, it is
necessary to have a process of "checks and balances" in terms of scientific observation
and evidence. Runtime Verification as a field of research stems from a discipline in
computational science called Verification & Validation (V&V).
V&V are two essential processes when evaluating and quantifying the correctness of a
computational artefact. [79]. Verification is "the process of assessing software correctness
and numerical accuracy of the solution to a given mathematical model". Validation is "the
process of assessing the physical accuracy of a mathematical model based on comparisons
between computational results and experimental data" [79].
V&V methods observe the full spectrum of system executions and corresponding results.
This is achieved by either watching the data generated by the solution of the associated
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models, or by watching and analysing the experimental results. Runtime Verification (RV)
is a subset of V&V, that checks the results of the system’s execution against the ones of
the model’s solution [32]. Sometimes it is referred to as Runtime Monitoring (RM).

RV can be applied to the verification of software components such as functions, services
of full programs. Furthermore, it can be used to verify communication protocols and
data flow. However, one can also apply the same techniques to verify behavior of full
systems such as Fog nodes, industrial machines or vehicles.

CPSs are closely coupled with their respective physical surroundings and as such their
execution can be unpredictable to some extent. It is often unfeasible to build a model
that can perceive all possible scenarios. Likewise, it is difficult to collect the full spectrum
of data necessary to verify all possible execution scenarios. RV provides an alternative
approach whereby we observe and verify a single execution at a time, observing relevant
variables and checking their correctness at simulation time or on runtime [30].

Information from RV can be used to detect and correct incorrect behavior of a system or its
components as presented in [86]. Further, it is a mechanism that can provide guarantees
to establish system attributes such as QoS and reach certain level of dependability as
shown in Chapter 7.

How? The formal verification of a system is an essential component in its certification.
Runtime Verification allows us to evaluate a working system and make sure that its
operation is satisfying the system specification. With a high number of extremely
heterogeneous components it is difficult to achieve formal verification off-line. Thus, we
need to use an on-line verification framework for each individual component.

Dynamic Reconfiguration, Self-healing or Self-adaptation

The ability to tolerate faults and errors, and to resist external influences, is a crucial
requirement for safety-critical systems and systems with higher functional constraints.
A common approach to fault tolerance is to apply modular redundancy of critical
components; this way if one component fails the redundant copies can proceed with the
operation [70]. To increase the efficiency of the system one can apply reconfiguration
methods that will restore the system or component in case of a fault or an error. Another
way to establish fault tolerance is to use implicit redundancies within a system to perform
system reconfiguration or adaptation.

In the work we presented in [86] we identified two types of self-healing: structural
adaptation and parametric adaptation. In this work we elaborate on the advantages of
structural adaptation where a function of a system is restored by rearranging the order
of components to replace the faulty ones. In Chapter 7 we present strategies for system
reconfiguration that can perform structural and parametric adaptation as well as the
combination of two methods.

Self-healing in CPS/IoT Ecosystems provides the ability to tolerate faults without the
need for explicit redundancies. The ability of the system to reconfigure and restore its
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original function after a fault is an extended attribute of dependability. It also supports
other attributes such as availability and sustainability.

How? A system’s robustness is often determined by its design. In highly volatile and
dynamic systems we are often faced with unpredictable situations that may or may not
be defined in the initial design of the system. Thus, the system is not always capable of
coping with the emerging faults. Having dynamic reconfiguration mechanisms allows us
to adapt to unforeseen scenarios during runtime.

Simulation

Simulation is one of three major research methodologies in computing research [51]. It
is the process of understanding or evaluating a system through the observation of its
model under the constraints of a simulated environment, where one can observe a system
as a whole or as a collection of its components [90]. Computer simulation provides us
with the ability to reproduce working conditions of even most complex physical systems
in real-time [31]. Studies have shown that the Simulation and model representation of
physical systems is one of the main pillars of Industry4.0 [95].

In the work we presented in [54] we demonstrate how simulation can be used to replace
a large-scale application environment in CPS/IoT to evaluate among other attributes
the scalability of a CPS/IoT Ecosystem implementation.

How? Simulation allows to explore the system dynamics at pre-design or at pre-
implementation time. This in turn allows engineers to create computer systems that are
better suited for a specific physical system.

Green Computing

Green Computing refers to the ecologically responsible use of computers and their
resources, and the design and development of methods that reduce energy consumption
and chemical footprint. It also provides guidelines on ecologically sensible disposal of
old devices [20]. Green computing initiatives don’t affect only consumption but also
resource distribution, power management, organization, dimension, and other ways to
reduce energy and waste overheads [92].

In Section 1 we presented the future trends in the expansion of CPS/IoT devices, with
the tendency for the number of devices to reach 100 billion by 2030. This represents a
major overhead on the electrical and environmental infrastructure. The devices used in a
CPS/IoT Ecosystem should be therefore designed with a certain level of sustainability,
which is not only represented in the energy consumption, but also in the longevity of the
devices, and their ability to be serviced and maintained.

For example, the cryptocurrency surge in recent years created a cryptomining industry.
The decentralized nature of these activities makes it incredibly difficult to track how much
energy they are using. However, models show that the publicly accessible Proof-of-Work
block-chains are consuming something in the range of 60 to 125 TWh of electrical energy
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per year [89]. The use of energy-inefficient devices for cryptocalculations is creating a
major global overhead both in energy consumption and in the population created by it.
A similar scenario could be possible with CPS/IoT devices and smart applications if not
approached systematically from the beginning.

Chapter 8 introduces an energy consumption model for CPS/IoT Ecosystems as defined
in Chapter 6. In addition, we show how alternative design methods such as use of energy
harvesting could reduce energy and chemical footprint in large CPS/IoT applications.

How? The rapid increase of computer systems is creating a growing energy and waste
footprint in the world. Building energy-efficient and long-lasting computer systems is
becoming a necessity, especially if we want to over-populate the world with computer
systems creating the so called Smart World.

Development and Operations (DevOps)

DevOps is a concept that bridges the gap between development and operation of software
systems. It comprises the automated management of software development, integration,
testing, deployment and delivery, monitoring and feedback [68]. It is a widely accepted
practice in the world of software engineering, especially for web-based applications [34].

However, DevOps is a relatively new concept for CPS and IoT, where development
processes are often ad-hoc and developer-centric. This approach is human-error prone,
especially when it comes to integration in large and complex projects. The faults are
readily propagated throughout the system, while debugging and testing is often extremely
difficult to perform. We consider DevOps to be an essential requirement for CPS/IoT
Ecosystems. It reduces development time and human-error potential, and also significantly
decreases costs in development and operation.

How? If we look at any model for the development of computer systems or software, e.g.,
the V-model, we can observe that a major portion of the computer system’s life-cycle is
in design and development. For CPS/IoT Ecosystems this process is even more complex,
as it potentially includes multiple sub-systems, components, and organizations. Having
an automated process that supports design, development, testing, and monitoring is
essential in order to cope with the complexity of these systems.

1.5.4 Evaluation of Dependability Properties
In previous section, we discussed architectural concepts and frameworks employed in
later chapters in order to satisfy the requirements of Section 1.5.1. In Section 1.5.2 we
indicated which basic methodologies were used in the scope of the research activities
presented in Chapters 2-8. We concluded that the experimental methodology is the most
often applied method to evaluate proposed theories and hypothesis.

The dependability of a system can be referred to as its ability to exhibit trustworthiness
and continuity of service, and the fact that one can rely on this service in justifiable
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and quantifiable manner [73]. Furthermore, dependability is characterized by individual
system attributes (see Figure 1.5). The evaluation of these attributes can follow through:
a) Verification and validation, or mathematical proofs, b) Testing, by using empirical or
probabilistic investigation, and c) Simulation, or model-based inspection. Each attribute
is quantified by measurable properties of a system. For example, we can represent
reliability as a probabilistic function R(t) = Pr(T > t) = ∞

t f(x) dx.

Properties such as Mean Time to Failure (MTTF) can be used to as a part of this
function to give us a quantifiable measure on how probable is it that a system will fail
in a given time frame. To determine whether the system is dependable enough for a
certain application, we need to check the conformity of these attributes with the norms
and requirements proposed by standards. The evaluation process involves crosschecking
functional requirements for the application with the attributes of individual components
and requirements set by standards.

For example, in Chapter 7 we proposed the model to formalize QoS for services in an
CPS/IoT Ecosystem where we include basic properties to describe QoS requirements
such as utilization, deadlines, critically level, and memory requirements. The critical
attribute determines the priority of a service compared to other services, higher critically
requires higher dependability. Services can require real-time execution, where hard-real
time deadlines cannot be missed. An application will set its required values for each
individual service, and standards will classify them in a scope of certain domain and
with given underlying infrastructure. If an underlying device is incapable of providing
a certain level of critically due to architectural shortcomings, it will automatically be
propagated to the service or an application in general.

Use of techniques such as segmentation, virtualization, SoA or dynamic reconfiguration,
will reduce dependence between individual nodes and components of a CPS/IoT Ecosys-
tem and thus simplify the process of evaluation and certification. We demonstrate some
of these approaches in Chapters 4, 5, 7.

How? In this section we reflect on the process of evaluation of certain dependability
attributes. It involves multiple methods from experimental evaluation to formal verifica-
tion. It is a process that is heavily dependant on standards as guidelines for development
and operation of these systems.

1.5.5 Challenges and Obstacles

In the text above we described necessary requirements for dependable CPS/IoT Ecosys-
tems. Further, we discussed recommended methodologies and concepts to solve methodi-
cal, structural and practical problems. We reflected on methods for evaluation and how
to measure and quantify the grade of dependability or reliance in CPS/IoT Ecosystems.
However, there are still missing components that need to be built or discovered to make
this story complete. Here we would like to highlight some of these problems and give our
assessment on the course required to solve them or reduce their effect.
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A CPS/IoT Ecosystem is a structural and hierarchical concept built from heterogeneous
components, not only in terms of functional objective but also in terms of application
domains, scope of operation and level of confidence it needs to provide. In Chapter 5
we presented a brief history of computational systems, and we can observe that CPSs
expanded and originated from networked embedded systems, a field of research and
development that was present since the beginning of computer systems. They were
strongly used in areas requiring high reliance and confidence in a system to deliver a
service (e.g., automotive, railway, avionics). CPSs inherit this background and build on
top of the infrastructure established in the earlier era.

This means that when we are building a safety-critical CPS application we are not
starting from zero, but there exist well established standards and methods we can follow.
Also, there is a significant amount of hardware and software produced for this purpose
that can be reused. This is especially important for system level software, i.e., device
drivers, communication protocols, and operating systems.

The IoT component is also emerging from earlier work performed on different commu-
nication paradigms such as wireless sensor networks, mobile networks, or industrial
automation. Similarly, as in the case of CPS, the IoT is recycling older technology and
making it more focused on the more actual problems.

In other words when building CPS/IoT Ecosystems significant groundwork and materials
are ready, and just need to be fitted into a system. This paves the way for auto-generation
of CPS/IoT projects, which reduces manual development and potential errors. For this,
we are missing an adequate modeling framework that would describe the full-scale stack
of CPS/IoT and all operational aspects: hardware platforms, middleware software,
application software, networking, data, dependability and operations. There are a
number of modeling languages and frameworks (e.g., AutomationML [3], SensorML[18] or
Resource Description Framework (RDF) [16]) that describe parts of the system or certain
aspects. A modeling framework of this scale would provide a full image of a system,
and would enable automated generation of code, configurations, operations pipelines,
runtime monitoring and verification. Such a modeling framework would help to increase
explainability of CPS/IoT Ecosystems and corresponding applications.

A second major obstacle in the sustainable design and implementation of CPS/IoT
Ecosystems is energy consumption and energy conservation. The number of devices is
rising each year and there are no clear guidelines on how to implement Green Computing
strategies on this scale. It is clear that we need to introduce programming paradigms for
CPS/IoT Ecosystems that will conserve energy by design.

One of the major factors when it comes to dependable CPS/IoT Ecosystem is certification.
The heterogeneous nature of a CPS/IoT Ecosystem requires adequate approaches towards
certification. Certification of software is always a challenging task, but in this case, one
needs to check each hardware device, communication protocol and causality between
individual components. Some initiatives like the Zephyr RTOS project [22] are working
on certification of operating system for IoT. The certification of communication channels
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Table 1.3: Representation of Research Questions in Chapters

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7
Virtual CAN
Secure Channels
Hybrid MPSoC
Mixed-criticality
CPS/IoT Ecosystem
QoS for IoT
Sustainable IoT

- Partial - Full Support

is handled using existing networking standards. However, a uniform solution or guideline
has yet to be proposed.

What? In the previous chapter we define architectural concepts and frameworks to
achieve certain dependability aspects in CPS/IoT Ecosystem. However, they are not
always enough to reach a required level of reliance and confidence in these systems. Thus,
we need to look beyond the state-of-the-art and keep identifying research topics that are
important for the goal of dependable CPS/IoT Ecosystems.

1.6 Thesis Synopsis

Chapter 2 (Virtual CAN)

Virtual CAN Lines in an Integrated MPSoC Architecture, Armin Wasicek, Oliver Höft-
berger, Martin Elshuber, Haris Isakovic, Andreas Fleck, 17th IEEE International Sym-
posium on Object/Component-Oriented Real-Time Distributed Computing (ISORC),
Reno, Nevada, USA, pages 158 - 165, 2014.

Chapter 3 (Secure Channels)

Secure Channels in an Integrated MPSoC Architecture, Haris Isakovic, Armin Wasicek,
39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Wien,
Austria, pages 4488 - 4493, 2013.

Chapter 4 (Hybrid MPSoC)

A heterogeneous time-triggered architecture on a hybrid system-on-a-chip platform, Haris
Isakovic, Radu Grosu, 25th IEEE International Symposium on Industrial Electronics
(ISIE), Santa Clara, CA, USA, pages 244 - 253, 2016.

Chapter 5 (Mixed-criticality)
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A Mixed-Criticality Integration in Cyber-Physical Systems: A Heterogeneous Time-
Triggered Architecture on a Hybrid SoC Platform, Haris Isakovic, Radu Grosu, "Solutions
for Cyber-Physical Systems Ubiquity", IGI Global, Hershey, PA, pages 169 - 194, 2018.

Chapter 6 (CPS/IoT Ecosystem)

CPS/IoT Ecosystem: A Platform for Research and Education, Haris Isakovic, Denise
Ratasich, Christian Hirsch, Michael Platzer, Bernhard Wally, Thomas Rausch, Dejan
Nickovic, Wilibald Krenn, Gerti Kappel, Schahram Dustdar, Radu Grosu, 14th Workshop
on Embeddedand Cyber-Physical Systems Education (WESE 2018), Turin, Italien,
Springer International Publishing, 2019.

Chapter 7(QoS for IoT)

QoS for Dynamic Deployment of IoT Services, Haris Isakovic, Luis Lino Ferreira, Irmin
Okic, Adam Dukkon, Zlatan Tucakovic and Radu Grosu, IEEE 22. International
Conferenceon Industrial Technology (ICIT), Valencia, Spain, 2021. (In Print)

Chapter 8 (Sustainable IoT)

An Energy Sustainable CPS/IoT Ecosystem, Haris Isakovic, Edgar Aaspiazu Crespo and
Radu Grosu, EAI Edge IoT, Braga, Portugal, Springer International Publishing, 2020.
(In Print)

1.6.1 Contribution of the Author per Chapter

(Virtual CAN) This paper discusses virtualisation techniques for communication
channels, demonstrated on the CAN protocol. The author worked on the integration
of the virtualization service with he underlying hardware architecture, operating
system PikeOs, and the middle-ware framework Autosar. The author provided
significant contributions to the practical implementation that led to the publication
and participated extensively on the publication itself.

(Hybrid MPSoC) We proposed a novel approach to an earlier implementation of
a many-core hardware architecture. The author designed and implemented the new
architecture on a novel hardware platform. Further, the author initiated, structured
and wrote the publication, with the support of prof. Grosu.

(Secure Channels) In this paper we proposed a security service for System-On-
Chip architectures. The author created initial design and implementation of the
security service. The proposed architecture was further refined in cooperation with
Armin Wasicek. The publication is credited equally to both authors, while the
author of this thesis presented the work.

(Mixed-Criticality) In this paper we extended an idea presented in the paper
"Hybrid MPsoC" onto mixed-criticality integration and proposed essential system
requirements for mixed-criticality integration. The work was co-written by by prof.
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Grosu. This publication is an extension of the "Hybrid MPSoC" and thus in the
thesis they will be discussed jointly.

(CPS/IoT Ecosystem) The author initiated the publication and proposed an idea
of conceptualizing a CPS/IoT Ecosystem as a practical and theoretical structure that
will define nature of relationship between CPSs and IoTs. A CPS/IoT Ecosystem
as a hierarchical structure supports novel data driven development and operation
of distributed computer systems. The author provided major contributions and
presented the publication. This is a significant publication for the thesis, because
it includes the first definition of a CPS/IoT Ecosystem.

(Sustainable IoT) The author initiated the concept and proposed the model
for energy consumption and energy conservation in a CPS/IoT Ecosystem. In
addition the author supported the development of the prototype. In conclusion the
author also initiated the publication and provided significant contribution in it. Mr.
Crespo contributed strongly on the prototype and publication, and prof. Grosu
provided valuable insight to various parts of the publication.

(QoS for IoT) We proposed the idea of using DevOps infrastructure as a medium
for Runtime Monitoring and Verification, that will enable Quality-of-Service assur-
ance on the scale of a single service and the system in general alike. The author
provided major contributions to the work and publication, with prof. Ferreira
and prof. Grosu adding significant parts. Irmin Okic, Adam Dukkon and Zlatan
Tucakovic were credited for their participation in the practical implementation.

1.7 Summary of the Thesis
A CPS/IoT Ecosystem is a hierarchical structure that unifies a CPS and an IoT in a
single organism, with the intention to implement applications with requirements for a
high degree of reliance and confidence in the system. As we explained in Section 1.5.5 this
is quite a complex task, and it needs to be observed from multiple operational aspects.

In this thesis we aim to present some pieces in this puzzle that we proposed in our earlier
works. The research spectrum presented in Section 1.4 develops from hardware related
topics at start to run-time verification and green computing towards the end of the list.
We will follow the same order (with few exceptions, where however, the same order in
terms of research topics is kept). Figure 1.8 shows the chronology of the published work.

1.7.1 Virtual Communication Channels
The cost of electronic components in vehicles increased by 50% in last 10 years, thus it
reached 45% of overall production costs in automotive industry [45]. The conventional
architecture in automotive systems is centered around an Electronic Control Unit (ECU).
We can describe this with a loose statement "one function one ECU". Modern vehicles
have around 100 ECUs that are connected via a Control Area Network (CAN). Also, the
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Figure 1.8: Chronological order of research publication. (Green) Publications included in
this thesis. (Gray) Supplementary publications.

software systems are getting more complex with millions of lines of code added to the
total almost every year, as we can observe in Figures 1.2 and 1.4.

This development method is reaching its physical and economical limits. Manufacturers
and regulation bodies aim to produce lighter and more efficient vehicles, and to reduce
overall production costs and emissions.

With the introduction of new hardware architectures, e.g., ACROSS [88], Aurix [1],
it became feasible to integrate multiple functions on a single ECU without loss of
performance or safety properties.

ACROSS MPSoC (see Figure 1.9) is a hardware architecture designed for integration
of multiple safety applications on a single chip without interference between individual
cores or significant reduction in performance. This architecture removes limitations of
conventional single and multi-core architectures. Moreover, it provides full spatial and
temporal isolation to all cores.

The Virtual Control Area Network (VCAN) extends the physical CAN interface to all
on-chip nodes in a completely transparent manner. It enables access to a physical CAN
channel to all on-chip nodes, and the ability to communicate with external nodes without
any constraints. Figure 1.10 shows an example with two channels and a multiple of off-
and on-chip nodes. ACROSS TTNoC can separate communication between the nodes
using time separation. VCAN is using this technology to virtualize physical channels
by supplying the individual messages to respective nodes using specific time slots. It
supports both BasicCAN and FullCAN, and it can serve applications and CAN devices
independent of their CAN infrastructure.
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Figure 1.9: ACROSS MPSoC architecture for safety-critical applications. The figure
shows a many-core architecture with eight cores. Four cores (blue) are reserved for
system/core services and the other four (green) are the cores where applications reside.

The benefits of VCAN are demonstrated on a hybrid engine control use case. It is a
prototype for a safety-critical application with fifteen different nodes, five of which are
located on the ACROSS MPSoC.

Both technologies introduced in this work are presenting numerous advantages for a
CPS/IoT Ecosystem. Application of many-core architectures with safety capabilities
will reduce the overall number of physical components in a system. Virtualization of
communication channels reduces weight and energy overhead imposed on a system by
the weight of cables and other devices used in these networks.

1.7.2 Secure Channels for Integrated MPSoC Architectures

As we mentioned in Section 1.5.1 security is one of the major challenges in the research
of modern computing systems. In the scope of an CPS/IoT Ecosystem this problem is
significantly more complex to handle due to the heterogeneous nature of such an assembly,
hardware and software constraints of the actors, and most important, exposure to the
Internet. Thus, it is necessary to approach the security paradigm systematically starting
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Figure 1.10: VCAN system structure example with two CAN channels.

Figure 1.11: Secure communication architecture for an integrated MPSoC architecture.

from hardware architectures to modeling, design and implementation of applications.

This work is an extension of the ACROSS MPSoC and the work on virtual CAN lines
presented in the previous section. It proposes a secure communication architecture (see
Figure 1.11) for ACROSS MPSoC and similar architectures. The secure communication
architecture consists of two basic building blocks, Secure Kernel and Secure Provider.
Secure Kernel performs security key management and secure channel control, while Secure
Provider performs security services such as encryption, message or device authentication,
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Figure 1.12: A heterogeneous time-triggered architecture on a hybrid SoC platform.

etc. Further, we introduce a notion of Secure Channel, an abstract object composed of
regular communication channel and security features on top of this channel.

The proposed security architecture uses underlying features of ACROSS MPSoC such
as spatial and temporal isolation of on-chip nodes, integrity of on-chip communication
channels manged by Trusted Resource Manager (TRM), and the ability to offer security
as a service. Use of underlying infrastructure to enforce security assets allows conservation
of resources and integrated security without involvement of application components.

The secure communication architecture presented in Chapter 3 is a collection of design
concepts that would conserve resources, enable fine-grained security configuration, and
offer security as a service within an integrated MPSoC architecture. These concepts
could be observed as solutions for some major security issues in security for CPS/IoT
Ecosystem, such as key, user and device management, lack of resources for encryption
algorithms, or applications not designed in conformity with security standards.

1.7.3 Hybrid MPSoC and Mixed-Criticality
In this Section we summarize Chapters 4 and 5 as they stem from the same work first
presented in the Chapter 4 and then further extended on the more general topic of
mixed-criticality in Chapter 5. This work is also an evolution of the work performed in
[88] and the works presented in Chapter 2 and 3.

A shortcoming of the ACROSS MPSoC architecture was computing performance, as the

35



1. Introduction

whole MPSoC was implemented on an FPGA. Even with the highest-ranking FPGAs at
the time it was limited to eight cores with the maximum core frequency of 400 MHz.

The next generation of FPGAs [60] offered a hybrid solution with a COTS CPU and
FPGA integrated on a single chip. This offered new capabilities for architectures such
as ACROSS MPSoC. We proposed an extension to ACROSS MPSoC by integrating
an on-chip COTS CPU as an ACROSS node (see Figure 1.12). The COTS CPU is
represented by a state-of-the-art multi-core CPU with a core frequency above 1GHz. It
would be used to offload computationally intensive non-critical tasks from the FGPA
nodes. It also increased the number of resources reserved for applications with higher
criticality grade that are hosted on the FPGA nodes. This reduced the probability of
potential resource-starvation scenarios and increased overall dependability.

This approach followed the principles set by ACROSS MPSoC architecture with slight
adjustments to the execution and updated infrastructural IP cores for the implementation
of FPGA components and interconnects. The nodes are still separated in space and time
and communication is synchronized on the trusted interfaces (TISS).

Mixed-Criticality Integration

In the above section we introduced a heterogeneous MPSoC architecture implemented
on a hybrid SoC, that is capable of hosting safety-critical applications and non-critical
applications on the same SoC. However, mixed-criticality integration still remains one
of the major challenges in research of computing systems. In Chapter 5 we identify
historical landmarks for computing research and development that lead to evolution of
cyber-physical systems and networked systems in general. Furthermore, we identified
main obstacles and challenges towards mixed-critically integration.

CPU architectures have experienced a generational turnover from single-core to multi-core
architectures. Due to rapid advancement of general requirements and an increased need
for performance, multi-core processors were developed to maximize throughput without
major concern for non-interference assurance or deterministic execution of tasks. This
created concerning circumstances in safety-related application domains, as the multi-core
architectures can not guarantee deterministic execution of safety-critical tasks. Software
solutions can approach this goal only so far. The hardware architectures are either
designed to prioritize performance or are unable to reveal scheduling algorithms due to
extremely high levels of protection on intellectual property. The most common solution
is to execute cores in complete isolation, where only one core would function at a time.

This is where solutions such as ACROSS MPSoC or Hybrid SoC presented in Chapter 4
provide obvious advantages. Not only to ensure interference free execution of tasks of a
same application, but also to ensure execution of whole independent systems in parallel.

We also identified the lack of a hierarchical or taxonomic approach towards defining
the level or grade of system criticality. Often systems are over-dimensioned due to the
inability to determine exact requirements. As we discussed in Section 1.5.1, requirements
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Figure 1.13: A model for integrated development and deployment of CPS.

definition is a multi-dimensional task and in the case when there are no clear guidelines
these definitions can overlap or be incomplete.

One of the challenges for mixed-integration is also discussed in Section 1.7.1 and Chapter
2, and that is the inability to manage progressively increasing complexity of CPSs. In
Figure 1.13 we show a simple model for integrated development and deployment in CPSs.
Managing this process means understanding the system from design to implementation,
and being able to verify its properties to ensure that functional and non-functional
requirements are met.

In Chapter 5 we also address the followinf question: What is the state of mixed-criticality
integration in networked cyber-physical systems or in computing research in general?
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In other words, this work laid foundations for the definition of CPS/IoT Ecosystems
presented in later Chapter 6.

1.7.4 CPS/IoT Ecosystem: Definition
The idea of a CPS/IOT Ecosystem originated through the project with focus on building
an infrastructure necessary to teach and research CPS/IoT topics. A common approach
to the research on CPS/IoT is to use simulation data or small-use case scenarios, that
fail to reflect the grand scale that is a CPS/IoT in the real world. The project CPS/IoT
Ecosystem was conceptualized with a focus on building a real-world infrastructure,
starting from the cloud servers, laboratories for fog and edge computing, and large
sensor/actuator networks that would mimic the equivalent size real-world applications.
What started as a name for a project soon became a concept describing the correlation
between a CPS and an IoT. Not only a collection of tools and devices that would be used
to perform experiments, but rather a set of methods and guidelines that would allow us
to formally define each component and its role in this system-of-systems. From the start
of the project it was obvious that there were no distinct guidelines on how to establish an
infrastructure for a CPS/IoT with the objective to host applications that require higher
level of reliance and confidence in the system underneath.
In Chapter 1.1 we define a CPS/IoT Ecosystem as a concept and describe its basic
attributes. Main characteristic of each CPS/IoT Ecosystem is that it can be divided in
three basic scopes of operation: the cloud, the fog, and the swarm. A combination of
these three layers of operations allows us to systematically collect data on an enormous
scale, transform this data in real-time into control sequences, or use it to learn new
emerging insights into systems under observation and optimize their overall performance.
To demonstrate functional and non-functional requirements for CPS/IoT Ecosystems we
presented two use cases that depict the sensitivity and complexity of different scopes of
operation and application development stages.
The first application, Smart Parking, is a typical application in the family of large-scale
Smart City applications. In a city such as Vienna there are over 100,000 parking places
[54]. It is a multi-actor application that is deployed over all three layers of operations.
Sensors are collecting occupancy data from parking spaces and Fog gateways are filtering
and aggregating this data into information which is then stored in the Cloud and forwarded
to an end-user or to another application via the Internet.
The second is a Smart Farming application: Smart Vineyards. It is an equally challenging
application, similar in scale to the first, with even stricter requirements in terms of
accessibility, energy consumption, and data accountability. For example, agricultural
settings such as vineyards require particular physical structures as support, and these cause
interference with wireless networks; thus a special type of communication infrastructure
is required to equip these structures with sensors or actuators. Further, they are often
located in remote locations without access to an electrical grid, which means that the
systems deployed in these environments need to be self-sustainable.
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Figure 1.14: A representation of a typical CPS/IoT application with a process of
development, deployment and verification, distributed on multiple services and over three
scopes of operation.

With this work, we opened a whole pallet of topics that are still vaguely discussed or not
discussed at all. Moreover, to expand this concept to build a stable ecosystem, especially
for applications, it is necessary to understand their individual components, the interaction
between them, and to establish accountability between development and operation.

1.7.5 QoS, DevOps and Runtime Verification
In the previous section, we described the motivation for CPS/IoT Ecosystems as a
hierarchical structure with multiple scopes of operation. We consider this structure to be
composed of heterogeneous devices and software components. A CPS/IoT Ecosystem is
an infrastructure for smart applications. These applications use services from all three
scopes of operation, and they are written by one or more individuals or organizations.
In the Smart City example, we witnessed how relatively simple applications could be
extremely complex due to scale and physical constraints.

Thus, it is necessary to apply different means to manage complexity throughout the
development and operation lifecycle of these systems. In Section 1.5.3 we identified SoA as
one of the most effective tools to manage complexity, composability and interoperability
in large-scale systems. But even with the structural observability that SoA provides, it is
extremely difficult to establish a functional workflow for simultaneous development of
services, software and hardware components, while maintaining full tractability of errors,
and enabling continuous evolution of the system in general.

In terms of software engineering for enterprise and web development, SoA is combined
with continuous integration and deployment methods (CI/CD) to achieve fully automated
operational lifecycle of each software artifact. CPS/IoT applications have strong roots in
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embedded systems that used a more direct developer-centric development approach. For
small applications this is still an acceptable method; however for large and extremely
large applications with multiple actors and organizations this becomes unfeasible.

In Chapter 7 we define a CI/CD system for an Arrowhead IoT framework. Its purpose
is to enable building, integration, deploying and monitoring services or other related
artifacts in a full automated manner. With the ability to monitor each service we can
establish health status of individual components or a system in general.

On top of the CI/CD infrastructure we proposed a runtime verification extension for
the Arrowhead Framework (RVAF) that can monitor and orchestrate Quality-of-Service
(QoS) on a scale of a service, node and even system in general. Moreover, the approach
can be easily generalized to other service-oriented architectures. It demonstrates how
important and useful is a complete CI/CD infrastructure for CPS/IoT Ecosystems.

First, we formalized the problem and proposed a system model that can describe individual
nodes and services. Based on this model, we proposed a formalization of QoS that can be
used as a QoS specification for a service or a node. Then we defined runtime-adaptation
algorithms that would ensure QoS guaranties during operation. The runtime-adaptation
strategy is arbitrary, it depends on the CI/CD capabilities and application requirements.
Basic runtime-adaptation strategies can be defined as: a) redeploying a service on
the same node, b) migration of a service, c) roll-back of service to earlier version and
redeployment, d) service termination, and e) resource reallocation for a service.

We implemented an experimental evaluation of RVAF on an actual CPS/IoT infrastructure
created in the scope of the project. We can perform the experimentation on the state-
of-the-art Cloud and both general purpose single-board computers and industrial grade
computers as Fog devices. This is important for the dependability question, as we can
evaluate timing factors for each of the CI/CD stages required for complete realization of
RVAF. As we implement the CI/CD infrastructure on existing tools, it is important to
evaluate the extent of this COTS solution in terms of response times and usability.

1.7.6 Sustainable CPS/IoT Ecosystem

In Chapter 8 we evaluated the sustainability of CPS/IoT Ecosystems and the methods
for building self-powered energy harvesting sensor nodes. Throughout this thesis we
pointed out that the ongoing computational evolution will yield billions of new devices
that will use existing methods for hardware and software design. The question is whether
the existing design paradigms are sustainable enough?

To offer a glimpse of the answer to this question we proposed an energy consumption
model that can be used to approximate the energy consumption of CPS/IoT devices.
In the model we excluded cloud servers as they have a slightly different consumption
model. However, use estimates from other authors show the possible energy consumption
of cloud servers.
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Figure 1.15: Energy production of EU from 2000-2019 according to Eurostat [48]. End
the projected energy consumption of CPS/IoT by 2030.

EIoT = (EIoTa × AR + EIoTp × (1 − AR)) × T × DIoT × (100% − ER%
100 )n (1.1)

The model in Equation 1.1 gives an estimate of the energy consumption based on a
consumption of an arbitrary device in passive and active mode of operation (EIoTa ,
EIoTp), a ratio between active and passive operation mode (AR), the projected number
of CPS/IoT devices in the projection period (DIoT ), projected growth of energy efficiency
for devices (ER), number of hours in operation over a period of one year (T ), and the
projection period in years (n).

Further, we explore alternative sources of energy consumption. In particular, we evaluate
energy harvesting to provide electrical power to CPS/IoT sensor nodes, without the need
for long-term energy storage units. The proposed solution offers a long-term sensor node
for remote and inaccessible places that can be used to detect natural catastrophic events
such as wildfires, floods, avalanches etc.

The experiments showed that this method is quite feasible to power sensor nodes.
Furthermore, it requires no chemical energy-storage device, which makes it sustainable for
a longer period of time and is environmentally friendly. Either through changes in design
and implementation paradigms, proper modeling approaches or using alternative sources
of energy the concept of "green" and sustainable CPS/IoT Ecosystems are essential
requirements for present and future applications.
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1.8 Contributions of the Thesis

The main objective of this thesis is to provide an insight into the changing landscape of
CPSoSs and the emergence of new hierarchical concepts such as a CPS/IoT Ecosystem,
and to establish an advisory pathway towards dependable design and implementation of
these systems. It gives an overview of the significant publications by the author, their
relation to individual research topics, and their role in enabling dependable CPS/IoT
Ecosystems. We propose a number of models, methods, tools, and frameworks, that would
enable various aspects of dependability in CPS/IoT Ecosystmes. This work summarizes
these activities and provides the reader with a broader picture on how they contribute
to the improvement of individual dependability properties, and the dependability of a
CPS/IoT Ecosystem in general.

We provided side notes intended to sort the contributions in the thesis on Why? defining
motivation, What? to point out a goal or requirement, and How? the procedure or the
approach to achieve certain contribution. We defined the focus of the thesis using seven
research questions:

RQ1: How to build a dependable hardware architectures for CPS/IoT Ecosystem?
RQ2: How to achieve virtualization of hardware resources in time?
RQ3: How to enable dependable mixed-criticality integration in many-core architectures?
RQ4: How to achieve a secure communication architecture on integrated MPSoC?
RQ5: How to conceptualize synergies between CPS and IoT?
RQ6: How to ensure QoS using run-time verification on a scale of CPS/IoT Ecosystem?
RQ7: how to achieve a sustainable CPS/IoT Ecosystem?

The contributions of the thesis are either direct answers to these questions or support
the answer in some capacity. We singled out nine individual contributions that can be
seen as significant for the topic of dependable CPS/IoT Ecosystems.

Contribution 1: Definition of a CPS/IoT Ecosystem (RQ5)

Why? CPS/IoT infrastructures are currently developed in an ad-hoc fashion. By
creating a model or unified specification, it would allow a more systematic and explainable
development, deployment, and maintenance of these applications.
What? Define a semi-formal hierarchical structure with clear scopes of operation and
interfaces between them.
How? One of the fundamental contributions of this thesis is the definition of CPS/IoT
Ecosystems in Chapter 6. We identified the basic building blocks and the requirements
for the dependable realization of a CPS/IoT infrastructure, middleware, and applications.
This work is complemented by in [54] where we proposed a simulation framework for
CPS/IoT Ecosystems that provides capability of simulating sensors and environmental
functions, that can be connected to real infrastructure. The contribution corresponds
directly to RQ5, and it supports RQ6 and RQ7 by extension.
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Contribution 2: Many-core hardware MPSoC architecture for integrated
safety-critical applications (RQ1)

Why? Computer architectures evolve constantly with a focus on increasing performance
and reducing power consumption. The switch from single-core to multi-core created a
vacuum in the domain of safety-critical systems. Multi-core CPUs are not able to run
with the required grade of dependability for safety applications.
What? Hardware architecture or software solution that would enforce and guaranty
deterministic execution of tasks.
How? In RQ1 we address the problem of safety in multi-core architectures. This
question has been answered first with the ACROSS MPSoC architecture [88], and then
further extended in other subsequent publications [47], [65]. Finally in Chapters 4 and
5, we expand the architecture with hard-coded CPU cores designed to overcome the
potential performance issues of the original architecture.

Contribution 3: Mixed-criticality integration (RQ3)

Why? Consumer-driven development of CPS/IoTs often leads to the necessity of
combining safety-critical applications or tasks with non-critical tasks. For example, an
on-board computer in a vehicle controls media streaming and car health status of a car.
What? A Hardware or a software framework that would allow execution tasks in
complete isolation.
How? Contribution 2 creates a baseline for integration of applications with different
security and safety requirements on a single MPSoC. In Chapter 5 we define requirements
for mixed-criticality, and demonstrate capability of the architecture proposed in 4 to
enforce them. These contributions directly correspond to RQ3, and also significantly
support RQ1 and RQ7.

Contribution 4: Secure communication architecture for dependable systems
(RQ4)

Why? The number of computer systems in CPS/IoT applications like automotive
applications or railway is constantly increasing. They are reaching a physical maximum
of how many electronic systems they can integrate.
What? The challenge is to increase the number of electronic or computer systems while
maintaining physical limitations. In this particular case, we want to extend limited
communication interfaces so they can be used by multiple nodes at the same time.
How? Using ACROSS MPSoC we are able to virtualize any physical channel on a level
of TTNoC. A physical CAN channel would be separated in multiple time slots for each
core on the MPSoC, thus allowing all of the cores to access the communication channel
in a completely transparent way. This work corresponds directly to RQ2, and partialy to
RQ3 and RQ4.
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Contribution 5: Virtualization of communication channels on an integrated
MPSoC architecture (RQ2)

Why? The number of computer systems in CPS/IoT applications like automotive
applications or railway is constantly increasing. They are roaching a physical maximum
on how many electronic systems they can integrate.
What? The challenge is to increase the number of electronic or computer systems while
maintaining the physical limitations. In this particular case, we want to extend the
limited communication interfaces so they can be used by multiple nodes at the same
time.
How? Using ACROSS MPSoC we are able to virtualize any physical channel on a level
of TTNoC. A physical CAN channel would be separated in multiple time slots for each
core on the MPSoC, thus allowing all of the cores to access the communication channel
in a completely transparent way. This work corresponds directly to RQ2, and partially
to RQ3 and RQ4.

Contribution 6: Model and proof of concept of CI/CD on the Arrowhead
framework (RQ6)

Why? A CPS/IoT Ecosystem is conceptualized as a large-scale collection of hetero-
geneous devices and software components. These components can be developed and
operated by multiple individuals and organizations. We need to ensure that all compo-
nents are properly integrated, that they could be updated if needed, and in case of error
that we can trace back where and why this error occurred. Using manual integration,
development and deployment this is almost impossible, especially on large scale projects.
What? Integration of CI/CD with CPS/IoT requires integration on different scales
of operation. The basic example would include build, integration, deployment, and
monitoring stages as automated tasks in the development process.
How? CI/CD and DevOps in general originated in large scale software engineering
projects and web applications. Using existing tools we implemented a CI/CD pipeline that
is able to orchestrate above mentioned basic stages of development in a fully automated
way. This contribution offers a partial answer to the RQ6. and also supports RQ5.

Contribution 7: QoS orchestration using RV (RQ6)

Why? In Section 1.5.3 we explained how dynamic reconfiguration of a system can
increase dependability and robustness of a system during runtime.
What? To ensure dependability and robustness through self-adaptation, we need to be
able to monitor components, services, functions or even individual variables. Further, it is
necessary to establish a formal definition or specification of a system that can be verified
in an automated manner. Finally, we need to be able to perform corrective measures on
the system to correct faults and errors.
How? In Chapter 7 we showed how to use exiting CI/CD infrastructures to perform all
tasks listed in What?. This enables us to monitor variables of choice, and based on the
data to decide what corrective measure to perform. The corrective measures are defined

44



1.9. Future Work

by reconfiguration algorithm that specifies various strategies that can be applied. Some
examples include redeployment, rollback, termination etc. This provides a direct answer
to RQ6 and even can be considered part of the answer for RQ7.

Contribution 8: Energy consumption model for CPS/IoT Ecosystem (RQ7)

Why? As mentioned above, it is expected that the number of CPS/IoT devices will
reach 100 billion by 2030. This represents a technological and socioeconomic revolution,
where we are entering the era of a Smart World. However, one of the vaguely answered
questions is how sustainable is this revolution?
What? Devise a mathematical model where we could approximate the energy consump-
tion of CPS/IoT devices in a specific time period.
How? The proposed model uses a consumer electronic power consumption model. It
calculates power consumption based on a number of devices, projection time period, time
of use over a year, average energy consumption per device in active and passive state
of operation, and yearly efficiency increase ratio. This way we can forecast the energy
consumption using different scenarios and evaluate what is a most probable scenario
based on geopolitical, economic, and technological conditions.

Contribution 9: Alternative power source for CPS/IoT sensor nodes using
energy harvesting from a surrounding environment (RQ7)

Why? CPS/IoT applications can be deployed on remote and inaccessible places. Some
of the applications can be considered safety critical (e.g., wildfire, or avalanche detection
sensors). Having a constant power supply is difficult in such cases. Also, the sheer
number of CPS/IoT devices will create an enormous overhead on existing power grids.
Building CPS/IoT devices using alternative power sources is thus a necessity to achieve
a sustainable CPS/IoT Ecosystem.
What? Identify potentially useful alternative energy sources and demonstrate their
effectiveness for the given use case.
How? Energy harvesting is not a new method to supply computer systems. We designed
a sensor node for the detection of wildfires that is operating without battery and is powered
using thermo-electric generators (TEG). The device uses a narrow-band communication
network, and it is active only in case it detects an event, in this case wildfire. It can stay
dormant for a number of years, but in case of a fire event it would provide a burst of
information including the location and outside conditions.

1.9 Future Work
Creating dependable CPS/IoTs requires deterministic behavior in hardware and software.
This is a multi-stage process that starts with the definition of requirements. Verification of
these requirements is a challenging task in CPS/IoT Ecosystems due to the heterogeneity
and scale of these systems. Further, requirements are written in a natural language and
cannot be processed by the verification algorithm without translation.
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1.9.1 Formalization of Requirements
Work is ongoing to formalize requirements via artificial intelligence (AI). For extremely
large systems, the manual translation of requirements in formal languages is time-
consuming and almost invisible task. Recent advancement in natural language processing
(NLP) technology allows us to build translators from natural language into arbitrary
formal language. This would have an enormous impact on the verification of CPS/IoT
applications. It would allow verification and feasibility checks at design time before any
code is yet written. Further, it opens the door for the automated generation of runtime
monitors, allowing the systematic observation of large numbers of signals or variables
with minimum overhead. In Chapter 7 we demonstrated a direct relationship between
runtime verification and service dependability. The next step is to fully automate this
process from requirements to a system model, runtime monitoring, and self-adaptation.

1.9.2 Reference Model for CPS/IoT Ecosystem
Earlier we discussed how CPS/IoT applications share large portions of infrastructural
code and design patterns with embedded systems, web applications, and other fields. We
are working on a reference model for CPS/IoTs that would allow the construction of the
necessary infrastructure and create the layout for an application. Moreover, the model
would describe the basic configuration of the infrastructure, e.g., virtual machines in the
cloud, fog nodes, middleware software etc. We would then use the model to generate
configurations, code and service templates for all the scopes of operation. This would
remove the possibility of human error in configurations of devices and system software,
and provide recommended configuration according to guidelines set by requirements
or standards. This approach has also other advantages such as rapid prototyping and
fine-grained configuration of properties relevant to dependability of a system.

1.9.3 Dependable DevOps
The role of DevOps is essential when building and maintaining large systems. As we
mentioned earlier DevOps tools are based on the requirements from other fields. It is
necessary to evaluate these tools for the use in dependable systems, or extend them
by adding additional features to a component. In the ADEPTNESS [2] we propose a
service-oriented architecture that is enabling dependable development and operations
for CPS/IoT Ecosystems. The architecture would consider all DevOps stages starting
with build and integration, auto-generation of tests, deployment and delivery of artifacts,
monitoring and verification, and uncertainty detection and self-adaptation.

1.9.4 Mixed-Reality Simulation Environment
Dependable CPS/IoT applications are often difficult to evaluate in a real-world envi-
ronment due to safety restrictions and limitations. Digital twins provide us with the
infrastructure to evaluate work in progress without violating any safety guidelines. In an
ongoing work we propose a mixed-reality simulation environment for evaluating mobile
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robotic platforms. This allows us to evaluate and verify the behaviour and operation
scenarios of mobile robots by combining physical actors with simulated actors. The
system is integrated with a runtime verification component, that enables the observation
and verification of system properties during these scenarios.

1.10 Conclusion
Current trends in science, technology, and society in general, are heading towards a Smart
World, a concept where ubiquitous computing and machine intelligence is integrated
into physical objects (e.g., consumer electronics, wearable), virtual resources (e.g., cloud
services), social paradigms (e.g., social networks), business and industry (e.g., factory
and business digitization) and even human reasoning [75]. These systems are becoming
entangled in a collaborative network of devices, services and socioeconomic practices that
create more sustainable ecosystems [96]. They are also a way to improve legacy methods
and routines, and to assert sufficient confidence in technology, such that is is allowed to
completely govern certain aspects of human existence.

Recently, we witnessed how a sequence of geopolitical events can lead to a global crisis in
production of electronic systems. The COVID-19 pandemic, together with political shifts,
created a vacuum in chip production and supply [24]. In effect, it stalled the production
of electronic components and systems all over the world, shutting down factories and
resulting in financial crisis on a global scale.

If we look over the horizon, in ten to fifteen years, we will have a global network of
smart devices that will interact with each other in an autonomous manner and connect
everything from personal every day devices to vehicles and industrial systems. Events
like the chip-shortage or crypto-energy crisis could create a major disturbance in the
operation of companies and society in general.

In Chapter 1 we introduced general requirements, standards, and methods for a de-
pendable CPS/IoT Ecosystem. We identified state-of-the-art architectural concepts and
frameworks that provide functional and operational infrastructure to ensure essential
dependability properties. Creating a dependable system according to traditional depend-
ability models is more difficult if we want to incorporate emerging trends such as green
computing and self-adaptation. Thus, we expanded the model with additional attributes
such as sustainability or reconfigurability as these requirements are stepping out from
the domain of the optional and becoming essential for a number of CPS/IoT applications.
A CPS/IoT Ecosystem is extremely heterogeneous in all aspects of development and
operation. There is an enormous number of technologies, tools and frameworks being
developed at the moment. Finding a reference model as a bottom line for integration of
these components into ecosystems is necessary if we want to ensure interoperability and
traceability. We describe some of these concepts and their functional advantages towards
dependability of CPS/IoT Ecosystem.

In the later chapters we discuss particular topics that are explored separately in different
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works but are unified around the concept of CPS/IoT Ecosystem. In Chapter 2 we
explore virtualization in the domain of communication channels and hardware interfaces
using time division to distribute messages from a single physical channel to multiple
virtual addresses. This work was extended on a secure communication architecture in
Chapter 3 where we use integrated properties of the underlying architecture to assert
security measures and create a security service completely transparent to the application.
Chapters 4 and 5 explore the notion of hybrid MPSoC architectures and their ability
to perform mixed-criticality integration. We continue with Chapter 6 where we define
the concept of CPS/IoT Ecosystem and its basic building blocks. Implementation of
CI/CD and its application to achieve perform runtime verification and Quality of Service
orchestration is presented in 7. Finally, in Chapter 8, we explore sustainability of CPS/IoT
Ecosystems and alternative methods of power supply for its devices.

A CPS/IoT Ecosystem is a living organism; it evolves over time, assimilating new
technologies and constantly expanding its abilities. To compress all different aspects
necessary to explain CPS/IoT Ecosystems in a single document would be borderline
impossible. With this brief overview and relevant examples from hardware, software,
security, operations, runtime verification, and energy efficiency we have provided a
snapshot of the CPS/IoT Ecosystem concept at its current stage of evolution. We hope
this thesis will support and inspire future works and contribute to the common goal
of better comprehension of CPS, IoT, and any emerging ideas that may be born by
combining these two concepts.
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Abstract—The standard solution for automotive control net-
works is the Control Area Network (CAN) bus. Almost any
vehicular computer system comprehends at least one CAN line.
For the past two decades, software development for control system
has been strongly connected to the properties and interfaces
of the CAN bus. Currently, the automotive industry is in
the middle of a technology leap towards an information-based
industry. New technologies are getting ready to fulfill newly
emerging requirements for innovative products such as hybrid
engine control, intelligent energy management, and advanced
driver assistance systems. Integrated Multi-Processor-on-a-Chips
(MPSoCs) will be one part of the solution to provide an adequate
computing infrastructure for these newly emerging systems.
The established technologies like the CAN bus will have to be
reconsidered. In this work, we propose a virtual CAN overlay
that abstracts the communication interfaces of an MPSoC to
provide the Application Programmer Interface (API) of CAN
to programmers. The overlay provides the standard behavior
of a CAN line and works transparently over chip boundaries.
The major implications is that the programmers can continue
their used software development approaches and tools when
introducing a new computing infrastructure. The main benefit
is that the productivity can be maintained during this critical
phase. In summary, our solution helps to mitigate the effects
from a technology shift to integrated MPSoCs. Our approach
is fully compliant with new automotive software development
approaches like AUTOSAR.

I. INTRODUCTION

The automotive industry is undergoing a time of substantial
change: current technologies and business models are are
getting obsolete and new ones have to be researched. The
newly emerging automotive marketplace will be fueled by
innovation. It is expected that electronics and software will
make up 75% of all future innovations [1]. The percentage of
production cost of electronics (including software) increased
from 19% in 2004 to 40% in 2010 and it will eventually reach
50% in 2020 [2]. Cars will be future software platforms, much
like telephones became nowadays.

Traditional, federate automotive system architectures have
been recognized as a bottleneck: in a federated architecture
each system function is implemented as a separate computer
system (i.e., an Electrical Control Unit (ECU) in automotive
terms). A subsystem is then formed by several loosely coupled
ECUs (e.g., through a CAN bus). Clearly, the obedience to
physical units restricts automotive system architectures greatly.
For instance, current vehicles already employ up to 100 ECUs,
which is the upper limit to the number of devices a car can
harness [3]. Moreover, adding more and more ECUs is a

significant cost driver. The solution to overcome these limits
is to integrate several system functions in single ECUs, thus
forming an integrated architecture [4]. Integrated architectures
that implement the required partitioning mechanisms can be
realized either in software (e.g., as a hypervisor) or in hardware
(e.g., as an MPSoC). In this work we focus on MPSoC-based
integrated architectures, because we are convinced that they
are appropriate to solve the partitioning challenge for hard
real-time systems appropriately [5].

Keeping pace with the rapid technological development
is challenging, time-to-market is a critical success factor for
any future product based on software. An automotive software
development process is a complex process that requires teams
of engineers with different domain expertise to collaborate, it
comprehends a myriad of different tools, diverging standards,
and varying legal regulations for each of the global six key
markets1, etc. Introducing new technologies in this tightly
organized process and changes happen slowly and incremental.
For instance, one of the recent milestones in automotive
software engineering is the introduction of the AUTomotive
Open System ARchitecture (AUTOSAR)2, whose project plan
was released in May 2003 and the first cars with AUTOSAR
technology inside were launched in the market in 2008. Setting
up appropriate tool chains and development methodologies
simply takes time.

The main contribution of this paper is a virtual CAN
overlay to speed up the integration of new computer platforms
leveraging MPSoC technologies. The presented virtual CAN
overlay facilitates similar properties and behavior to a real
CAN bus. Implementing automotive applications against this
virtual CAN interface leverages existing software development
methodologies and tool chains while introducing a new com-
putational MPSoC platform.

The paper is organized as follows: Section II elaborates
on integrated MPSoC architectures which form the basis for
our research. Section III contains a technical description of
the proposed virtual CAN overlay. In Section IV we present
a case study of a hybrid engine controller which has been
implemented and tested in an automotive Hardware in the
Loop (HiL) testbed. Finally, we discuss some related work
in Section V and draw a conclusion in Section VI.

1I.e., China, India, Western Europe, Japan, Korea, and the United States
2http://www.autosar.org/



II. AN INTEGRATED MPSOC ARCHITECTURE

In this section we present briefly the ACROSS MPSoC
architecture which is a research platform for hard real-time
embedded systems. We the following sections we discuss
implementation and validation of the virtual CAN overlay on
this platform. Our results, however, are transferable between
similar system architectures with predictable interconnect and
according spatial and temporal partitioning properties.

A. Benefits of Integrated Architectures

In a federated architecture, the provision of dedicated
resources for each subsystem sums up to a high amount of
redundant hardware. Integrated architectures aim at reducing
this overhead by providing common computing resources to
several system functions and thus virtualizing the required
resources for executing a single system function. These ar-
chitectures have the potential to enable massive cost savings,
reliability improvements, and to overcome limitations for spare
components and redundancy management [4].

For instance, integrated architectures can help to reduce
the wiring of an automotive system by replacing physical
cabling with virtual channels. This directly leads to lower
manufacturing costs since fewer connectors, cables, electronic
parts, and assembly steps on the production line are required.
Furthermore, a reduction of the number of connectors can lead
to improved reliability of the entire system, because, if fewer
connectors are used, one major source (i.e., 30 %) of electrical
failures in cars gets eliminated.

B. The rise of MPSoCs

A MPSoC incorporates multiple, potentially heterogeneous
processing cores and other functional units on a single sili-
con die. Compared to general-purpose single core processors,
MPSoCs can provide enormous computational capacity in an
energy-efficient and cost-efficient way. The roadmaps of the
semiconductor industry [5] show a very clear trend towards
multi-core technology, and we can safely assume that the
majority of future high- end processors will be MPSoCs.
Today, MPSoCs are typically applied in personal computers
or consumer electronic devices like smart phones or tablets.

Safety-critical systems are systems whose failure could
result in loss of life, significant property damage, or damage
to the environment. Examples are flight control systems for
aircraft, automotive control systems, medical devices, indus-
trial control systems or nuclear power plants. MPSoCs could
bring many benefits (e.g., energy and area efficiency, increased
computational performance, specialized cores, reduction of
physical units) to safety-critical applications. However, the
currently existing MPSoC architectures were not designed with
a strong focus on safety and certification and thus have serious
drawbacks and limitations for hard real-time applications.

C. The ACROSS MPSoC in a nutshell

The ACROSS MPSoC is a computer system architecture
specifically targeted at safety-critical applications, i.e., systems
including safety functions that have to fulfill the highest
certification requirements. The ACROSS project3 has been

3http:www.across-project.eu

Fig. 1. ACROSS MPSoC architecture

started in order to overcome the limitations of MPSoCs for
hard real-time systems. This is achieved by implementing
spatial and temporal partitioning (also called segregation, or
non-interference) between single components.

An ACROSS MPSoC (see Figure 1) consists of two
subsystems. The application-specific subsystem (green and
red) encompasses a set of potentially heterogeneous com-
ponents and is targeted to implement the actual function
of an application. The trusted subsystem (yellow) provides
an interconnect to integrate application components into a
system. The core innovation of the ACROSS MPSoC is the
Time-Triggered Network-on-a-Chip (TTNoC) that enables the
dependable interconnection of IP cores (i.e., components) [6].
Each core in the MPSoC has access to a consistent chip-wide
notion of time (i.e., the macro tick).

1) Structure of the Interconnect: The trusted subsystem
provides a set of core services towards the application-specific
subsystem. These core services manifest themselves in the
Trusted Interface Subsystem (TISS) which essentially imple-
ments a periodic and sporadic message transfer scheme, as
well as some services to control the attached component. The
trusted subsystem acts autonomously and transfers messages
according to an a priory defined communication schedule
between the sender and the set of receivers (multi-cast is sup-
ported) at a message’s defined send instance with reference to
the macro tick. An immediate benefit for the system engineer
is that the time-triggered schedule is free of conflicts, so no
online arbitration required and temporal behavior is ’designed’,
so no wearisome analysis after the implementation has to
be done. Moreover, the trusted subsystem will ensure fault-
containment [7] by exploiting information about the permitted
temporal behavior of the host IP cores in order to detect and
contain an arbitrary temporal failure of a host (e.g., babbling
idiot, masquerading faults). For this purpose, each TISS acts
as a guardian of the hosted component preventing temporal
and spatial interference.

2) Anatomy of a Component: The application-specific sub-
system is further enhanced by deploying a combination of
middleware and system components to customize the generic
core services to a particular application domain. System
components (red) usually are used to implement a specific
gateway functionality that can be shared by several appli-
cation components (green). Middleware layers refine single
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application components. For instance, a port of the PikeOS
microkernel [8] is available to provide typical Real-Time
Operating System (RTOS) services (e.g., real-time scheduling)
to application components. Single application component run
distinct instances of PikeOS and communicate only using
the core services. A refinement of the core services towards
the automotive domain is the virtual CAN overlay which is
also implemented as a Middleware according to ACROSS
terminology.

D. Connection to AUTOSAR

The PikeOS microkernel has the capability to implement
different APIs, so-called personalities. For instance, a personal-
ity for AUTOSAR is available. This personality gives the the
application programmer the possibility to implement against
the domain-specific Runtime Environment (RTE) interface
rather that towards the native system call interface. On the
bottom of the middleware stack, however, there is a missing
link between the microkernel and the TISS. This link can
be established by either directly integrating the core services
as a new Complex Device Driver which requires additional
integration effort on the application programmer’s side. Or
AUTOSAR middleware and TISS can be linked via the CAN
overlay. This solution does not require any changes to the
application programmer’s programming model or tool chain4.

III. VIRTUAL CAN LINES

The Virtual Control Area Network (VCAN) overlay pro-
vides VCAN lines on top of a MPSoC. It enables the seamless
integration of physical and VCAN lines. The application
programmer just has to deal with nodes in a CAN network.
The location (i.e., either on-chip or off-chip) of the nodes is
transparent to the programmer. Figure 2 depicts this concept.
Two CAN lines (red and blue) connect an arbitrary number of
on-chip and off-chip nodes. On the boundary between on-chip
and off-chip sits a VCAN gateway that implements a physical
CAN connectivity. Each node deploys a VCAN Provider which
implements the CAN API.

A. CAN System Model

A CAN system [9] is a multi master network which
uses a CSMA/CD (Carrier Sense Multiple Access/Collision
Detection) variant with arbitration on message priority. Each

4Note that the CAN overlay is fully functional without AUTOSAR. We
point out this connection only because our case will make use of this potential
integration.

message is assigned a fixed priority/ID and a sequence of
messages forms a signal. Before sending a message the CAN
controller checks, if the bus is busy, then starts transmission.
If two nodes are simultaneously starting to send, the one with
the higher priority will win the arbitration and the other will
back-off.

In order to support a wide variety of legacy CAN appli-
cations the VCAN gateway service supports the BasicCAN
(receive queues) and the FullCAN (mailboxes) behavior. Ba-
sicCAN and FullCAN are not defined in the specification of
the CAN standard, but describe two different principles in the
architecture of a physical CAN controller, considering mainly
the way how incoming messages are filtered. BasicCAN is
usually used in cheaper standalone CAN controllers or in
smaller microcontrollers with an integrated CAN controller. A
BasicCAN controller has a single FIFO receive-queue with a
global acceptance filter. FullCAN is used in high performance
CAN controllers and microcontrollers. FullCAN controllers
have a set of buffers called mailboxes that are assigned an
identifier and are set to work as transmit, receive or remote
buffers. When the CAN controller receives a data message it
checks the mailboxes in order to see whether there is a mailbox
configured as a receive buffer that has the same identifier as
the incoming message. If such a mailbox exists, the message
is stored in the mailbox and the host is notified. Otherwise the
message is discarded. When a remote message is received, the
controller checks the message identifier against the mailboxes
configured as remote buffers. If a match is found, the controller
automatically sends a message with the identifier and data
contained in that mailbox.

B. CAN Hardware

Physically, the VCAN Gateway consists of some hardware
logic and resources (i.e., TISS, NIOS2 processor, some on-chip
memory, local IO, pins) on the FPGA and an expansion board.
The expansion board uses an M51–Quadruple CAN Interface,
which provides four distinct SJA1000 CAN controllers5. Thus,
we support with this design up to four different physical CAN
lines. Each CAN controller can be operated in one of two
modes: BasicCAN mode or PeliCAN mode. For the VCAN
overlay only PeliCAN mode is used, because this mode also
covers the BasicCAN mode. Moreover, the communication
speed for each controller can be configured individually from
62.5 kbits/s up to 1 Mbits/s.

For outgoing messages each CAN controller provides a
transmit buffer that is able to hold one message. This message
is autonomously transmitted after a successful bus arbitration.
A receive buffer with 64 bytes allows to receive between 4
and 21 messages, depending on the frame format and number
of data bytes per message. When the receive buffer is full,
messages have to be read from the buffer before further
messages can be received. Otherwise, messages can get lost.
In order to guarantee the same message order for components
inside the MPSoC as well as receivers outside, the CAN
controllers are configured to also receive messages that have
been sent by the CAN controller itself. Thus, virtual, on-chip
CAN messages are not treated differently to messages on the

5The actual number of transceivers is arbitrary and not constrained by our
design. Four simply seemed to satisfy our demonstrator’s requirements.
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off-chip, physical CAN hardware. Only messages that won
the bus arbitration and that have successfully been transmitted
on the MPSoC external CAN network can be received by
components inside the MPSoC.

The CAN hardware is connected to a gateway (marked as
IO Component in Figure 3) via a memory-mapped interface
that allows accessing the hardware by simply reading or
writing memory locations. On this interface data has to be
transferred in bytes. Each component within the MPSoC that
uses the VCAN overlay is connected to the gateway through
a periodic, unidirectional communication channel. Therefore,
each component implements one single-cast channel to the
gateway and the gateway implements a multi-cast channel to
all registered nodes.

C. Virtual CAN Gateway

The VCAN Gateway acts as an intermediary between the
endpoints of a CAN line. Endpoints can be either VCAN
Providers (see Section III-D) on the application components,
or CAN nodes connected to the off-chip network. The purpose
of the VCAN Gateway is to implement virtual bus arbitration
between CAN messages in order to privilege messages with
a lower ID (i.e., higher priority). Furthermore, incoming mes-
sages have to be distributed to all components that are inter-
ested in a specific CAN line. As at the gateway implements
no message filtering, all messages are forwarded to the VCAN
Providers.

The VCAN Gateway Application consists of two tasks,
one task is responsible for reading and writing to the CAN
hardware, and the other task manages the communication with
the VCAN Providers connected via the TTNoC. In order to
synchronize the event-triggered hardware access task and the
time-triggered virtual CAN communication task, both tasks
implement receive queues and send buffers. Figure 4 depicts
the structure of the VCAN Gateway.

A receive queue is an array of messages for an individual
CAN channel that stores incoming messages until the time-
triggered process collects them and sends them via the TTNoC.
Send buffers hold one message per CAN line for each compo-
nent. After a message has been sent successfully, the according
send buffer is freed and the component is informed in order
to allow further messages to be sent. Due to the semantics of
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CAN messages the following update strategies for send buffers
are possible:

Send buffer empty: a new message can be placed in the send
buffer without restriction

Send buffer occupied: if new message has
• Higher message ID (i.e., lower priority): new

message cannot be copied to the send buffer
• Same message ID: new message replaces old
• Lower message ID: new message replaces old

1) Hardware access task: The hardware access task is
responsible to write messages into the transmit buffers of the
individual CAN controllers and to read messages from each of
the receive buffers of the CAN controllers. Therefore, it checks
each CAN controller whether the transmit buffer is ready for a
new message to be sent. If yes, it searches the highest priority
message (i.e., the message with the lowest message ID) from
the send buffers that has to be sent on the according CAN
channel. The send buffers contain at most one message per
CAN line per component.

After the transmit buffer of all CAN controllers have
been written, the task checks, if the receive buffer of the
CAN controller contains messages. In case new messages are
available, the controller copies them to the receive queues of
the VCAN Gateway and the hardware buffers of the CAN
controller are freed.

2) Periodic communication task: The periodic communica-
tion task manages the TTNoC communication with the VCAN
Providers at the application components. It is activated with a
frequency of 1kHz – this frequency is necessary to attain the
requirements for the automotive case study (see Section IV).
The task’s activation instant is synchronized to the send and
receive instants of virtual CAN messages by means of a task-
trigger event emitted by the TISS.

At first, CAN messages are read from the receive queues
and appended to the VCAN message sent on the TTNoC. This
message has a static size and is designed to guarantee that
no message will be lost at a CAN transfer rate of 1 Mbits/s.
It additionally contains acknowledgment information about
successfully sent messages for each individual component (for
details on the virtual CAN message format see Section III-E).

After the virtual CAN message has been written to the
TISS, incoming virtual CAN messages from the application
components are read. These virtual CAN messages contain at
most one CAN message per CAN line. The content of the
CAN message is stored in the according send buffer. From
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there, the hardware access task constantly selects the message
with the highest priority to be sent. Additionally, the virtual
CAN message contains abort request information which tells
the VCAN Gateway to cancel the transmission of a specific
CAN message.

D. Virtual CAN Provider

The VCAN Provider is middleware running on an appli-
cation component on top of a PikeOS instance. It enables
applications to use the VCAN overlay. The VCAN Provider
creates a virtual CAN controller locally. The Virtual CAN
Provider is implemented as a file provider in the PikeOS and
uses PikeOS’ system extensions mechanism. Each VCAN line
corresponds to one file provider. Each file provider contains all
necessary information for the configuration of a CAN line, and
it also provides memory containers for storing incoming and
outgoing CAN messages. The VCAN Provider communicates
with the TISS system extension on one side and the application
software on the other side. The VCAN Provider is connected
with the VCAN Gateway over two sporadic TTNoC ports.

E. Virtual CAN Message Format

VCAN messages are used to distribute CAN messages,
status information regarding the hardware, control information,
and acknowledgment data about sent CAN messages between
VCAN Providers and VCAN Gateway. There is one message
type for each direction (corresponding to solid and dotted lines
in Figure 3). Both types of VCAN messages reserve bandwidth
for each of the four CAN channels. Thus, VCAN messages
consist of four segments having the same structure.

The benefits of this setup is that (a) no CAN line is
influenced by the traffic load of another CAN channel and no
message gets lost even in full load scenarios, because of no
shared resources, and (b) it enables direct access to the required
CAN segment, since the address offset within the virtual CAN
message is known.

1) Virtual CAN Gateway message: The Virtual CAN Gate-
way message is a single message that is transmitted to all
VCAN Providers simultaneously. Figure 5 depicts the structure
of one segment of a VCAN message. Each segment starts
with an acknowledgment block that contains an ACK field
for each component. This field is an 8 bit sequence number,
which indicates to the VCAN Provider that a CAN message
has been sent successfully on the CAN line. If the ACK field
is 0, then no message from the according VCAN Provider
has been sent on the CAN line in the last period. Otherwise,
the sequence number that has been sent by the Virtual CAN
Provider in the transmit request message is returned. The next
element in the message structure is the status word which is
divided into Bus Status (BS), Error Status (ES), Data Overrun
(DO), and Message Count record fields.

The BS flag is read from the CAN controller and signals
whether the controller is involved in bus activities, or not.
When the ES flag is set, an error occurred, which cause can be
read from the error capture code. Is the DO flag set it means,
that an incoming CAN message has been discarded as the
receive buffer was full. Message count contains the number
of CAN messages that are transmitted in the Data section of
the virtual CAN message.

In the error status word a copy of the content of different
hardware registers of the CAN controller is provided. This
includes the RX and TX Error counters, as well as the
Error Capture Code, that may indicate the cause of a
communication or controller error.

The data section of the VCAN Gateway message is
reserved for the actual CAN messages that have been received
by the CAN controller. The size of this section (i.e., 128
byte) is designed to guarantee no message loss at a CAN
communication speed of 1 Mbits/s and a virtual CAN message
period of 1 ms. In order to save bandwidth, this section is
organized as one continuous data block where a CAN message
only consumes as many data words as needed. In this data
section, CAN messages are further distinguished according to
their frame format. For standard frame messages the Frame
Information and the Message ID fields share one 32 bit data
word. Extended frame messages use separate data words for
the frame information and the message ID. Depending on the
number of bytes in the CAN message data section, one (i.e., for
1− 4 data bytes) or two (i.e., for 5− 8 data bytes) data words
in the virtual CAN message have to be used. Thus, for each
CAN message between 1 and 4 data words with 32 bit are
consumed.

2) Virtual CAN Provider message: The Virtual CAN
Provider message is an individual message from each of
the Virtual CAN Providers to the Virtual CAN Gateway
Application. It is used to communicate transmit requests,
which require that a CAN message that has to be sent is
added, or abort requests (or both). In Figure 6 the structure
of one segment of the VCAN Provider message is shown.
Beside the CAN message content (i.e., Frame Information,
Message ID and Data) this message type contains a Transmit
Request Sequence Number and an Abort Request Sequence
Number. Only if the sequence number is not equal to zero,
the according command is valid.

The transmit request sequence number is incremented



whenever a new CAN message has to be sent. If no CAN
message is available, it is reset to 0. This number will be
returned by the VCAN Gateway when the CAN message has
been sent successfully on the CAN line. When the transmission
of a CAN message should be aborted, the abort request
sequence number is set to the sequence number of the transmit
request to be deleted. If the CAN message has not been sent,
the VCAN Gateway will delete the referenced CAN message
from the send buffers and CAN controller registers.

In contrast to VCAN Gateway messages, CAN messages
that are contained in transmit requests always have the same
structure and reserved message size.

F. Virtual CAN Protocol

The VCAN protocol defines the sequence of messages
exchanged on the TTNoC and the off-chip CAN network. For
incoming CAN messages (i.e., originating from an off-chip
node), this sequence is straightforward:

1) M51 CAN controller receives CAN message
2) VCAN Gateway reads CAN message from controller
3) VCAN Gateway appends CAN message to VCAN

Gateway message
4) VCAN Provider receives and processes the VCAN

message

The sequence for outgoing CAN messages (i.e., originating
from some application component) is as follows:

1) VCAN Provider sends CAN message with Transmit
Request Sequence Number (TRSN) to VCAN Gate-
way

2) VCAN Gateway tries to send the CAN message on
the CAN network

3) If CAN message can be transmitted on the CAN
network, the message is simultaneously read by the
CAN controller

4) CAN message is read back (i.e., read from the receive
buffer of the CAN controller) by the VCAN Gateway
and treated like a normal incoming CAN message

5) CAN message is packed into the VCAN Gateway
message and the TRSN is copied into the ACK field
of the application component from which the CAN
message originates.

6) VCAN Provider reads the VCAN Gateway Message
and uses the acknowledgment information to free the
send buffer

The VCAN Provider has to wait at least one complete
period until it receives the acknowledgment for a transmit
request. But due to the send buffer update strategy (see Section
1.2), the VCAN Provider may send a new transmit request
(with incremented TRSN) to the VCAN Gateway Application
even if the old transmit request has not yet been acknowledged.
This may only happen if the message ID of the new CAN
message is lower or equal to the previously sent transmit
request. CAN message with higher message ID can only be
transmitted when the old transmit request was acknowledged.
Because of the TRSN and the ACK field, the VCAN Provider
always knows which of the transmit requests is acknowledged.

In Figure 6 an exemplary protocol sequence is shown. The
VCAN Provider sends a transmit request (TR = 27) for a
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CAN message with ID = 48. As no CAN messages have been
receive on the CAN network until the first VCAN Gateway
Message is generated, this message does not contain any CAN
message and an empty ACK field (i.e., ACK = 0). After an
(unrelated) incoming CAN message with ID = 35 was re-
ceived, the VCAN Gateway could send the CAN message from
the transmit request 27 on the CAN network. Simultaneously,
the CAN message is read by the CAN controller.

The VCAN Provider sends another transmit request (TR =
28), even if the old request was not yet acknowledged. There-
after, the VCAN Gateway transmits the CAN messages that
have been received since the last VCAN Gateway Message
(i.e., messages 35 and 48). As the CAN message of transmit
request 27 has been successfully sent, the ACK field returns
the sequence number of this request (ACK = 27).

During the next period the VCAN Gateway is not able to
send its CAN message, as all incoming messages have higher
priority on the CAN network. When the VCAN Provider
sends its next transmit request (TR = 29), the message
also includes an abort request command (AR = 28). This
tells the VCAN Gateway to remove the CAN message from
the previous request from the send buffers. The next VCAN
Gateway Message does not acknowledge any transmit request,
but contains all CAN messages that have been received in the
last period.

Finally, the VCAN Gateway send the CAN message from
the last transmit request on the CAN network and sends the
acknowledgment at the end of the period.

IV. CASE STUDY: HYBRID VEHICLE CONTROL

The automotive case study demonstrate how the ACROSS
MPSoC can be used to integrate several ECUs on a single chip.
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It shows how the VCAN overlay is used to connect the single
ECUs and how it integrates with a sophisticated automotive
tool chain. The goal of the used hybrid control application is
to minimize fuel consumption.

The case study realizes a HiL setup. Figure 7 and Table I
depict and describe the according system model. A HiL
setup typically consists of a unit under test (the MPSoC), an
environmental simulation and optionally a physical testbed. We
used the AVL InMotion6 HiL tool which offers an interface
to different kinds of automotive testbeds. In the automotive
testbed we used a custom hybrid engine.

For validation of the correct functioning of the VCAN in-
frastructure, we did some integration tests. Next, we considered
the communication between InMotion and the MPSoC in the
hybrid engine control scenario. This communication is done
using two CAN lines (Backbone-CAN and Peripheral-CAN).
Measurements were made with the AVL InMotion Software
CAN-Analyzer.

A. Integration Tests

1) Message Completeness and Frequency Test:

Rationale Despite a high bus utilization, the completeness
of messages and their respective frequencies must be
guaranteed.

Procedure Both the MPSoC and AVL InMotion are connected
to a CAN-Analyzer. The messages received on the CAN-
Analyzer are checked against their reference values while
frequency is increased. This is repeated for all CAN lines.

Result This test has been completed successfully.

2) Signal Calibration Test:

Rationale Signals (e.g., a speed signal) from the application
must be packed into an according sequence of CAN
messages by the sender and unpacked by the receiver.

Procedure Both the MPSoC and AVL InMotion are connected
to a CAN-Analyzer. Each signal is brought to certain
defined values (Using InMotion and the CAN-Analyzer).

6https://www.avl.com/

TABLE I. DESCRIPTION OF THE ELEMENTS OF THE CASE STUDY

Component Description
HCU The HCU (Hybrid Control Unit) implements the supervisory hybrid

control strategy. It interfaces the Driver and commands EMCU and ECU.
NCU The NCU (Navigation Control Unit) processes position information and

estimates future loads based on the desired route.
Driver The driver is a simulation that keeps the virtual vehicle on the virtual

track in a desired manner.
Road The road simulates external conditions and interacts with the virtual

vehicle as well as with the Driver and the NCU.
EMCU The EMCU (EMotor Control Unit) receives demands from the HCU and

controls EM1 and EM2 considering constraints such as StateOfCharge.
BMU The BMU (Battery Management System) monitors the vehicle’s battery

and calculates the StateOfCharge as well as other vital parameters.
ECU The ECU (Engine Control Unit) receives demands from the HCU and

controls the ICE (Internal Combustion Engine) of the vehicle.
SAFETY This module implements a safety concept according to a machinery

directive. It monitors the doors at the testbed, speed of engines, . . .
DYNO The Dyno is a powerful electrical drive controlled by EMCON. It is used

to establish the simulated rotational speed at the shaft of the engine.
EMCON Hardware and software for the control, manual and automatic operation

of the combustion engine and dynamometer on an engine test bed.
PUMA PUMA supports its users to execute testing tasks at the testbed.
TIP TIP is the interface layer between AVL InMotion and the testbed.
BAT The BAT is traction battery of the HEV. It is simulated within AVL

InMotion and interfaces both EMotors and the respective Control Units.
EM1 EM (EMotor and Generator) is used to accomplish hybrid electric

functionalities that lead to reduction of consumption and emissions.
EM2 See EM1
Monitor
Logging

In order to keep track of the communication between the ACROSS
MPSoC and AVL InMotion. External components (CAN-Analyzer) are
used. Also, inside AVL InMotion, a Data-Logging unit is realized.

By checking the received signal for differences, this test
indicates systematic and sporadic errors in definitions and
implementation.

Result Sent and received signals were consistent.

3) Delay/Jitter – Tests:

Rationale Communication delays – or dead times – are of
special interest in the area of control theory since they
have a crucial impact on the control performance and even
stability.

Procedure A CAN-Analyzer is used to introduce specially
shaped (rectangle) signals on the CAN line, which are
mirrored by different nodes and then read back by the
CAN-Analyzer. By comparing the sent signal and the
received signal, the transportation delay can be evaluated.

Result Delay times were nearly constant in all test cases.
Delay values scatter around 500µs. Thus, the VCAN
overlay does not introduce significant delay or jitter.

B. AUTOSAR Software Development

The workflow to derive the control application for hybrid
vehicles is depicted in Figure 8. It conforms to the AUTOSAR
specification and involves several tools from different suppli-
ers. The input is basically the System Model, that describes the
whole application running on the MPSoC, and the applications,
which are the ECUs and the safety unit.

C. Hybrid Engine Control Use Case

1) Backbone CAN: The Backbone CAN line is used to send
demand-values from the supervisory hybrid control unit (HCU)
to the respective plant control units (ECU, EMCU, BMU) and
to report measured values from the hybrid powertrain back.
It uses a CAN speed of 1Mbit and Standard CAN (11bit)
identifiers. In total there are 17 CAN messages defined that
require a bandwidth of 15.04kb/s.
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2) Peripheral CAN: The Peripheral CAN line realizes the
communication with powertrain-components such as ICE, EM
and Battery and their according ECUs. In addition to this CAN
line, several signals from sensors are fed into the system using
analog and digital IO (and vice versa with actuator signals to
powertrain components). In total there are 16 CAN messages
defined that require a bandwidth of 13kb/s.

A successful NEDC test [10] was conducted to assess the
fuel economy of different hybrid control strategies.

V. RELATED WORK

The CAN bus [9] was introduced by the Robert Bosch
GmbH in 1986 and it became soon the de-facto standard for in-
vehicle communication [11]. A multitude of works on the CAN
bus is available. Many textbooks on real-time systems describe
its working principle [12], [13]. Studies on its a capabilities and
properties have been published, for instance, critical review on
its real-time performance [14] or on its security [15].

The huge success of the CAN bus and the availability of
low cost controllers extended its usage beyond the automotive
industry and triggered new developments based on the orig-
inal CAN protocol. Most notably, CANopen [16] and time-
triggered CAN [17]. Also the applicability of the CAN bus
as a serial communication protocol for the avionics has been
considered [18]. Virtual CAN networks on top of a time-
triggered network have been treated in [19]. A CAN gateway
connecting physically distinct CAN lines is described in [20].

VI. CONCLUSION

In this work we presented a virtual network layer emulat-
ing a CAN bus. The resulting VCAN overlay facilitates the
connection of purely virtual with physical CAN lines. Such
a software layer is particularly useful when introducing new
computation platforms like MPSoCs in existing production
environments with established work flows and tool chains.
We demonstrated our solution by implementing an automotive
control application for hybrid vehicles on top of the VCAN
overlay. The application was developed using the AUTOSAR
design flow and tools.
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Abstract—Providing security in an embedded system often
boils down to solving a trade-off problem between security and
performance. Simultaneously, Multi-Processor System-on-a-Chip
(MPSoC) devices are in the early stages to increase computational
performance, energy and die area efficiency, and reduce the
number of physical units in the embedded system design arena.
Moreover, MPSoCs enable composing heterogeneous subsystems
on a single silicon die which is particularly desirable for large
volume embedded devices. However, these benefits come at a
price: an increase in the system’s complexity. Complexity does
not only make the system design process more difficult, but also
it renders certain vulnerabilities possible. A solution is to follow
well-established architectural principles to reduce complexity and
to provide the required level of security. In this paper we demon-
strate how the basic architectural principles of the ACROSS
MPSoC architecture can be combined with the requirements
of standard security techniques (i.e., encryption, authentication)
to produce an efficient security solution for MPSoC systems.
We propose a security architecture which uses the principles
of temporal and spatial partitioning, temporal determinism,
and mixed-criticality integration to migrate resource expensive
security functions form the application components to a dedicated
security component within the MPSoC. This leaves application
components with a thin security provider, without any loss of
functionality and more local resources at their disposal. Thereby,
we deliver a flexible, resource efficient security solution, which
highlights the benefits of partitioning MPSoC architectures for
security.

I. INTRODUCTION

A security architecture describes how the security design
artefacts are positioned and invoked, and how they relate to
the overall system architecture. A security architecture’s goal
is to establish the non-functional properties confidentiality,
integrity, and availability for authorised users [1]. Technically,
the portion of the system that sustains these three properties
is called the Trusted Computing Base (TCB). A TCB [2] is a
small amount of software and hardware that security depends
on and that we distinguish from a much larger amount that
can misbehave without affecting security. Hence, defining what
is inside and what is outside a system’s TCB is the critical
security design task.

Integrated systems implement a variety of different types
of computational units. They are a very challenging cate-
gory for system designers, because each subsystem can have
completely different properties. Multi–Processor System–on–
a–Chip (MPSoC) platforms are currently emerging as a very
powerful representatives of heterogeneous systems. The flexi-
bility of an MPSoC with heterogenous components can facili-
tate distributing the application’s computational load between

components. This can be a particular benefit in embedded
system applications, which often require a special mix of
processing tasks.

However, these benefits of heterogenous systems come at
a price. According to the European Aviation Safety Agency
(EASA) [3], most existing MPSoCs are classified as ’highly
complex micro controllers’. With respect to security, complex-
ity is a major source of vulnerabilities [4]. Therefore, a MPSoC
architecture should provide complexity reduction techniques
not only for system design purposes, but also to facilitate
a more secure system [5]. The most common engineering
approach to reduce complexity is divide et impera – partition
the system in controllable subsystems. Then, the problem to
be solved by the architecture is how to join the subsystems in
a secure way.

Another challenge on the road to a secure system is
the tradeoff between performance and security. Mechanisms
used to enforce security are usually resource demanding. Par-
ticularly, in resource-constrained environment like embedded
systems this tradeoff is a critical point for security design.
In safety-critical systems, resource allocation is often guided
by over-dimensioning in order to provide enough resources
at a critical instant. This design approach might lead to an
expensive design solution.

In this paper, we propose a possible security architecture
based on the ACROSS MPSoC [6]. The ACROSS MPSoC
facilitates a solution for the design and implementation of
hard real-time applications. It represents a new generation
of MPSoCs with integrated Time-triggered Network–on–a–
Chip (TTNoC). The ACROSS MPSoC provides several non-
functional properties (i.e., temporal determinism, temporal
isolation, spatial isolation, partitioning). The main contribution
of this paper is to show, how these properties can be used in
combination with standard security mechanisms to improve
the organisation and implementation of a generic security
architecture.

The remainder of the paper is organized as follows:
Section II focuses on partitioning architectures, Section III
provides overview of security architecture basics, Section IV
elaborates how partitioning is used to design security, in
Section V we present our findings, and Section VI concludes
the paper.

II. PARTITIONING ARCHITECTURES

In this section we describe the concept of partitioning in
computer systems. Our main focus is on partitioning in the



embedded systems domain and MPSoC platforms.

Kopetz [7] illuminates three major design strategies to
counteract complexity for the embedded system designer: par-
titioning, abstraction, isolation and segmentation. Numerous
examples of partitioning can be found in biology (i.e., ant
colonies [8]), as well as in system design. Partitioning a highly
complex computer systems into smaller independent functional
units is one of the most frequent techniques to master complex-
ity. A common definition of a partition is ’a system partition or
logical partition is a subset of computer’s hardware resources,
virtualized as a separate computer’ [9]. This definition mostly
refers to software partitions implemented through a virtualiza-
tion, but there are other ways to implement partitioning on
a computer system. If we observe partitions as independent
functional units with certain properties, than each sub-system
of a larger system which possesses these properties can be
called logical or system partition. In practice, a partition or
a functional unit is realized as a software/hardware artefact
that works in isolation, but is connected via well-specified
interfaces to the other parts of the system. Following this
definition it is apparent that a partition’s properties manifest
in its interfaces. Thus, we can deduct all required and existent
properties of a partition by analyzing its interfaces [10].
Clearly, the concept of a partition is very well applicable in the
security domain, because a security architecture first partitions
a system in different entities and then defines access rights
between these entities.

Two properties of a partition are very relevant for the
design of embedded real-time systems:

• Spatial Isolation. A spatially isolated partition owns
a part of memory which cannot be accessed by any
other partition. The guarantee of the spatial isolation
increases confidentiality and integrity of the partition’s
private data. These two properties are also part of the
security specification of a partition and the system in
general.

• Temporal Isolation. A temporally isolated partition has
a guaranteed uninterruptible execution time by any
other partition. This means that temporal characteris-
tics of that partition cannot be influenced in any way.
This property increases execution determinism, it can
be used to predict a system behaviour. Therefore it
supports dependability and reliability of a partition,
which are preconditioning properties for safety.

In order to apply the principle of partition on a sub-
system, at least one of these properties must be achieved. Other
important properties are: energy consumption, computational
power, security, fault propagation. The partitions are indepen-
dent units and if they are spatially and temporally isolated their
additional properties mutually incremental. The properties of
an individual partition add up to the same property on the
system level.

In order to analyse a computer system, we want to apply
the concept of partitioning on two levels:

• Software Partitions. The partitioning mechanisms are
realized in software, for instance, in the operating
system.

• Hardware Partitions are implemented by dividing a
system’s physical resources (i.e., processors, mem-
ories, communication controllers) into functionally
independent units.

In the next two sections we describe the methods and
techniques used in the state-of-the-art partitioned systems, to
achieve partitioning. We show how these different types of the
partitions stack up, in the systems with mixed partition types
(i.e., MPSoC).

A. Operating System Level

On the Operating System (OS) level, techniques to achiev-
ing partitioning are often summarised under the hood of virtu-
alization. Virtualization has been introduced by IBM in 1972
for the mainframe computers [11]. Since then virtualization
became important for every computing domain, from powerful
internet servers to small embedded systems. There is a large
spectrum of relevant techniques, ranging from simple process
virtualization to virtualizing an entire computer system.

A virtualization manager is the part of the system that
spawns the partitions. It is usually called Hypervisor or Virtual
Machine Monitor (VMM). A Hypervisor can be implemented
as a process that emulates an OS. Therefore, it can contain
again different processes which might translate to execution
threads of the original OS hosting the Hypervisor. This tech-
nique is called Paravirtualization. In this case, the Hypervisor
encapsulates an application in a process. Consequently, the
strength of the isolation between encapsulated applications
depends on how the original OS manages the resources be-
tween different processes. Other virtualization techniques are
full virtualization [12] and Hardware Assist, which relies on
special hardware modules which support the virtualization. The
full virtualization uses binary translation technique and direct
execution techniques. This means that Hypervisor takes the
instruction set used by the Guest OS and translates it to the
one executed on the underlying hardware.

Another way to achieve software partitioning are micro-
kernels. Contrarily to virtualization whose origins are in the
mainframe computers, microkernels were soon adopted by
the embedded computing community. A microkernel provides
only the most basic operations needed to implement an OS.
Other functionalities (e.g., a networking stack) are shifted in
so-called servers which run as processes in the user space.
Microkernels are an important architecture type for Real-
Time Operating Systems (RTOSs). In the embedded domain
important representatives of the microkernel-based OSs are
INTEGRITY [13], LynxOS [14], OKL4 [15] and PikeOS [16].

Another way to achieve software partitioning is using
a microkernel. A microkernel provides only the most basic
operations needed to implement an OS. Other functionalities
(e.g., a networking stack) are shifted in so-called servers
which run as processes in the user space. Microkernels are
an important architecture type for RTOSs.

In the embedded domain some of the microkernel-based
OSs which implement partitioning are INTEGRITY [13],
LynxOS [14], OKL4 [15] and PikeOS [16]. T
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Fig. 1. Schematic diagram of ACROSS MPSoC: Application (1,2,3,4) and
system components (Diagnostics, Mass Storage, IO) are composed via the
Time-Triggered NoC

B. MPSoC Level

The future of embedded systems is in MPSoCs. Micro-
controllers, Field–Programmable Gate Arrays (FPGAs) and
other common computing elements will be pooled on a single
silicon die shaping a heterogeneous System–on–a–Chip (SoC)
for energy efficiency, size, cost, and integration reasons. These
elements will be connected by a dedicated communication
infrastructure like point-to-point (P2P) channels, a bus, or
Network–on–a–Chips (NoCs) [17]. MPSoCs are a powerful
solution, but apart from the benefits like versatility and perfor-
mance there are some drawbacks like complexity. For instance,
using an MPSoC in a safety-critical applications is currently
not advisable, because the certification issues.

As a research initiative, the ACROSS MPSoC (see Fig-
ure 1) is set out to simplify certification for safety-critical
applications in different application domains. This is achieved
by implementing partitioning and encapsulation. Opposed to
some virtualization techniques that use hardware features,
the ACROSS MPSoC is totally designed to segregate its
components in partitions in hardware. A component is a
container for any system or application functionality. Com-
munication between partitions is done through so-called en-
capsulated communication channels that are defined over a
Time-Triggered NoC [18]. End-points of these encapsulated
communication channels are called ports. The generic interface
used for message exchange between SoC components and the
TTNoC is called Trusted Interface Subsystem (TISS). Mes-
sages exchanged over the TTNoC are strictly bound to their
temporal specification. Furthermore, memories are not shared,
each partition is required to have its own. Components are
containers for functionalities. Application components realize
the required functions for the application whereas system com-
ponents are responsible for correct operation of the MPSoC’s
native functions (i.e., IO, Mass Storage, Synchronization, etc).

At first, the ACROSS MPSoC was designed to host hard
real-time systems. But the applied design principles have a

strong impact on the implementation of a security architecture.
Using the powerful concept of partitioning on the hardware
level, we are able to imitate physically distinct units of com-
putation. A similar design can be found in current industrial-
grade SoC solutions like the ARM TrustZone (secure and
non-secure mode of operation) [19] and the Cell processor’s
’Secure Vaults’ [20].

C. Combination

Hardware and software partitioning mechanisms can be
combined to facilitate a two-level partitioning approach. In
ACROSS, a component can instantiate a partitioning OS like
for instance PikeOS. This results in a fine grained partitioning
architecture. Each software partition spawned inherits the
properties given through the execution on a specific hardware.

In our case, a PikeOS partition will execute on a component
of the ACROSS MPSoC. Therefore, it has some very special
properties when communicating with other partitions on the
same MPSoC. Although integrated on the same SoC two
instances of PikeOS cannot invalidate temporal or spatial
guarantees of each other. From the application’s view the
usage of a partition is always the same. Partitions communicate
through so-called queuing and sampling ports, be it that they
are hosted on the same component or on different components.
This gives a designer a the freedom to split the application in
as many partitions as needed and distribute the partitions on
components as wanted. When communicating with partitions
on the same components, a partition has the usual properties
that are given by PikeOS. When connecting to an external
device, a partition acts as a physically distinct entity.

In the next section we present a generic security archi-
tecture for communication that we will put on top of the
partitioning concept of the ACROSS MPSoC in the subsequent
section.

III. SECURE COMMUNICATION ARCHITECTURE

A security architecture is the part of the overall system
architecture, which describes how does the system satisfy
security requirements [21]. In this section we describe one of
the most common design pattern of any security architecture,
a Secure Channel. Associated with a Secure Channel are the
Secure Kernel and a key management facility.

Figure 2 depicts the big picture of the secure communi-
cation architecture. It depicts the architectural elements that
refine the TISS which is the standard interface to access the
TTNoC. On the bottom, a regular communication through a
standard channel without any security guarantees is given. If
a Secure Channel should be used, the send and receive opera-
tions are executed on the Secure Provider which transparently
provides a channel with security properties to the application.
All Secure Channels of a component are administered and
maintained by the Secure Kernel.

A. Secure Kernel

The Secure Kernel is considered to be the TCB in an
ACROSS MPSoC. The security of a system cannot be com-
promised if the TCB is operating according to specification.
The Secure Kernel is responsible to manage keys and access



Fig. 2. Block diagram of Secure Communication Architecture

rights of all Secure Channels of a component. Therefore, an
application does not have to take care of any bookkeeping, but
it can invoke the communication API for secure and regular
channels in the same way.

The Secure Kernel is an independent thread which executes
several tasks important for establishing of secure channels. It
executes in its own partition and is therefore isolated from the
application’s functions. Its memory cannot be accessed from
the application partitions and it embodies only the minimal
amount of confidential information. Hence, even if it would
be compromised, the effect would concern only the active
connections of the compromised component. An attacker could
not use it to gather keys from other components.

When the channel is opened from an application a key for
that channel is requested from the Secure Kernel. This request
contains the port ID of the channel, which is then used as an
input for the minimal perfect hash function. The hash function
returns the index of the corresponding key in the key table
managed by the Secure Kernel. If keys have to be exchanged
with some other entity, the Secure Kernel performs this action
in a secure and reliable manner.

B. Secure Channel

The Secure Channel is an abstract object composed of
a regular communication channel and a security protocol
implemented on the communication channel. A protocol is
defined as a series of steps, which involve two or more parties
with a goal of achieving certain task. The security protocol
uses cryptographic algorithms to solve a security related issue
on a communication channel. Which security mechanisms are
actually used in a security protocol is defined by requirements
of an application. This can be implemented differently from
application to application.

The basic structure of a secure channel is shown in Figure 3
and comprises following elements:

• Cryptographic algorithms which provide basic crypto-
graphic services

• Security protocols which extend the capabilities of the
cryptographic algorithms and provide security proper-
ties to communication channels

• A user access list to manage access rights to the
channels

Fig. 3. Secure Channel Structure

• Key management system provides secure storage and
distribution of the keys used for various security
protocols and cryptographic algorithms.

Establishing a Secure Channel requires coordination and
connection of several basic services of the ACROSS service
model. The secure channels in ACROSS are unidirectional
single-cast channels based on symmetric encryption security
mechanisms. Here the procedure that instantiates a Secure
Channel in the ACROSS MPSoC:

1) Secure Channels are created by the application using
the related API

2) The API evokes the Secure Channel Provider which
opens a special storage holding unit for the channel.
Thus, Secure Channels are host by a Provider and the
Secure Kernel handles security key management.

3) Secure Channel Provider opens a single port on the
TTNoC for each channel, which is then used to
transmit data for the channel. The port configuration
data is static and shared among channel among parties
before compile.

4) A secure channel are used only for the off-chip
communication, therefore a gateway (IO component)
is instructed to establish communication with the
other device. This requires configuring ports on both
sides and the gateway to relay the messages.

C. Key Management

The key management defines the process of a key gener-
ation, key storage and a key distribution. Keys are generated
either during the pre-configuration phase or during runtime.
Each channel is provided with the single key which are man-
aged by the Secure Kernels. The Key management exists once
per physical device. Hence, it is implemented as a dedicated
system component. Access is facilitated only via the rigorously
specified interface at the TTNoC.

IV. USING PARTITIONS TO DESIGN FOR SECURITY

The security design problem we are solving in this section
is how to map the general security architecture defined in the
previous section to partitions. In our system model, partitions
are established through the physical separation between cores
as well as the separation mechanisms of the OS running on
each core. Generally spoken, it is assumed that hardware
security mechanisms are stronger than software mechanisms,
because hardware is naturally not as modifiable as software.



Basically, we reason about partitions that execute on the
same core and partitions that run on different cores. Partitions
interact only via their communication (linking) interfaces.
Communication channels are statically allocated before run-
time. The integrity of the MPSoC’s configuration is continu-
ously checked by the Trusted Resource Manager (TRM). Then
an encapsulated communication channel can be:

• Local: the parties are located on the same component
and communicate via an OS mechanism like a mes-
sage queue

• On-chip: the parties reside on different cores of the
same MPSoC and they are communicating only using
the TTNoC

• Off-chip: the parties reside on different MPSoCs and
for the communication they use first the TTNoC, then
a gateway to an off-chip network (e.g., TTEthernet)

A. Fine-grained control of encryption

Depending on the mode entities communicate Secure
Channels are instantiated and the strength of their security
mechanisms is determined. Embedded systems often do not
dispose over bountiful resources and must compensate on some
properties to achieve optimal performance. Each of the above
described modes has a different impact on the realization of
a Secure Channel. The concrete impact is determined by the
attacker model used. For instance, we want to assume that
an attacker can tap, eavesdrop, and manipulate the device’s
pins and their physical connections. It is out of scope for the
attacker to open the device’s package and read out the TTNoC1

Furthermore, we also assume that reading out a component’s
memories (e.g., via microprobing) is not feasible.

Using such an attack model, we can determine which
Secure Channels actually requires security processing and
which considered to be safe. This has to be determined for
each Secure Channel individually. Therefore, our architecture
also accounts for instantiations with channels with mixed
security requirements (i.e., ). Giving the designer such a fine-
grained control over the execution of security protocols and
hence cryptographic algorithms facilitates the design principle
Economy of Mechanism. Moreover, the implementation of
the security architecture can be more performant and less
resource intense. This is particularly important for Embedded
Systems, because they have often stringent resource constraints
regarding computational power, memory sizes, and energy
budget.

B. Offloading intense computations

The second direct benefit of our proposed generic security
architecture is that computationally intense operations can be
securely offloaded to system components. For instance, the key
management which runs as system component in a separate
hardware partition performs the creation of new cryptographic
keys. Key creation can be a highly demanding process. At
least, it involves computing a random number generator and
conversion of random bits in the appropriate key format. In

1If instantiated as an ASiC, it is easily to visually locate the connections of
the NoC in the layout. It would have as well have a larger feature size than
e.g., the devices implementing a processor.

Fig. 4. Powerboxing: The original ECU is replaced by a powerbox that
contains different (more powerful) control algorithms for a specific engine. In
our experimental setup, a logger is connected via a Secure Channel to detect
such a manipulation.

case of asymmetric encryption, primality testing and operations
on big integer numbers are required in addition.

The key management has to solve a producer-consumer
problem. It has to produce enough cryptographic keys that are
then consumed by the respective Secure Kernels. Traditionally,
key creation is implemented as a background task on the same
computer that perform send/receive operations. This has a ma-
jor drawbacks: considering a real-time system, this background
task might not receive enough resources in a critical instant
and the application could run out of cryptographic material.
When integrating several subsystems into a single device like
aspired by the ACROSS MPSoC, the benefits of a shared key
management component is getting obvious: The components
can focus on what they actually want to do, namely sending
and receiving messages. Key creation can be managed by a
specialised component. This has also an impact on the energy
consumption of the device. If no background tasks are running,
power gating is trivial. Moreover, if the key management
component has a dedicated hardware support, its operations
can be perform energy-efficiently.

V. USE CASE: POWER BOXING

As a use case, we use a Secure Channel to monitor
values of an automotive Engine Control Unit (ECU) to detect
malicious manipulations in the control system software, for
instance through a power boxing attack [22].

Powerboxing [23] directly modifies the output signals
of an ECU by inserting a hardware module in the vehicle
(see Figure 4). The rationale behind this idea is similar to
chip tuning: an attacker wants to tap the engine’s maximum
potential. The inserted module either replaces the original ECU
on the communication system or it is placed as a man-in-the-
middle between the original ECU and its connected actuators.
The installation in the vehicle is fairly simple as demonstrated
by several supplier guidelines and demonstration videos on the
internet. It requires plugging the new unit to the power supply
and to reconnect the network cables from the original ECU
to the powerboxing module. Example is a fuel injector tuning
chip which changes signals between ECU and a fuel injector
module. It increases power of the engine by increasing the
injection time of the injector. The principal block diagram is
shown in Figure 4.

Such manipulation can be effectively detected by continu-
ously monitoring an ECU’s output. We used a Secure Channel



to periodically output an authenticated message containing
the current state of the engine controller. The controller is
implemented in an ACROSS MPSoC. The receiving device
logs the state and its authenticity. Absence of the correct
authentication indicates external manipulation of the signals.
The logger might then report to the driver, a garage, or even
the Original Equipment Manufacturer (OEM) to inform that
the current setup has been compromised.

The experimental setup for the original ECU was done by
our colleagues from the control department partly in simulation
and partly with real devices. In a subsequent step, we added
the Secure Channel to the demonstrator as a proof-of-concept
for our security architecture. Moreover, we showed that the
operation of the Secure Channel does not interfere with the
temporal guarantees given by the component, hence, it is
minimally invasive.

VI. CONCLUSION

Partitioning is a valuable concept to effectively reduce
complexity in system design. In this paper, we showed how
partitioning can successfully applied to design and implement
a secure communication architecture. Starting with the abstract
notion of a secure channel we broke down the required security
protocols and cryptographic algorithms in different partitions
where the respective functionalities are implemented. This
straight-forward design approach is enabled by the strong iso-
lation and encapsulation guarantees of the underlying system
architecture. In our case be build on an MPSoC architec-
ture intended for integrated, hard real-time systems. Layering
the presented security architecture on top does not interfere
with established timeliness and dependability properties as we
demonstrated in the automotive case study. Wrapping up, we
showed that implementing security is feasible even in strictly
constrained environments like hard real-time systems, if a
sound architectural approach is followed. Clean separation of
functionalities is enabled by implementing partitioning as a
foundation.
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Abstract—There is a huge discrepancy between off-the-shelf
(COTS) hardware architectures and requirements for embedded
industrial applications. Industrial systems are getting more com-
plex by the day, and an interaction of highly diverse components
within these systems is unavoidable. An implementation of such
systems on COTS hardware is challenging. Platforms based
on single-core CPUs is becoming limited, and use of multi-
core architectures yields safety risks, and overall inefficiency.
Tailored architectures provide adequate service but they lack
flexibility and therefore their economic justification is limited.
Emerging technologies i.e., hybrid system-on-chip combined with
novel architectural concepts are filling blind spots between COTS
architectures and embedded industrial applications.The paper
presents the implementation of an MPSoC architecture on a
hybrid system-on-a-chip platform. This architecture provides
unique capabilities for embedded applications, in particular, the
possibility to host mixed-criticiality and cross-domain applica-
tions.

I. INTRODUCTION

Industrial embedded applications (such as, automotive,
aerospace, railway, internet-of-things, industrial automation)
are implemented either on general purpose COTS hardware
or on dedicated hardware components. In the former case
versatility and accessibility are main goals. In the second case
the focus is on solving of a specific problem.However, the
design and production of computer hardware architectures is
mainly influenced by requirements of general purpose comput-
ing. The first computer architectures were based on single-core
CPUs, which evolved to multi-core CPUs as the performance
and efficiency limits of single-core were reached. Due to
limitations of safety and reliability requirements the industrial
applications are mainly implemented on single-core architec-
tures. On a single-core CPU tasks are usually divided in time
and the system software guarantees interference free opera-
tion. However, most multi-core processors are designed with
no special consideration towards isolation of different tasks
(e.g., all applications share components in non-deterministic
fashion). As a consequence, a sufficient guarantees cannot be
provided for safety critical systems without significant loss of
performance, for example, disabling all cores, except for one.
The industrial applications are getting more complex by the
day and are forced to migrate multi-core architectures in order
to meet the performance requirements, and the fact that CPU
manufacturers are abandoning single-core architectures. The
whole process is yielding serious challenges.

In this paper an overlaying hardware architecture is pre-
sented which utilizes advances in the design of state-of-the-

art field programmable gate array (FPGA) devices technology.
It is an adaptation of the hardware architecture described in
[1], which proposes an alternative approach to COTS multi-
core architectures. The legacy architecture was implemented
on a platform with limited performance capabilities. In this
paper a new implementation of the architecture is described,
implemented on a novel hardware platform Arria V ST SoC
from Altera [2]. It is implemented on a SoC chip that combines
a powerful FPGA device with a hard processor (e.g., ARM
Cortex). It elevates the performance capabilities of the over-
laying architecture and provides new options for the system
designers. The new implementation of the architecture uses
a modular interface-based approach to build a heterogeneous
MPSoC with hard processor component and a set of soft-coded
processor components.

The following section gives an overview of the design
challenges for the industrial embedded systems. In Section III
the implementation of the legacy architecture is described. Fur-
ther, Section IV introduces the hybrid SoC technology. Section
V contains the implementation details of the architecture. In
Section VI a short case study on two industrial uses cases is
given, followed by sections with related work and future work.
Final sections contain closing words and acknowledgments.

II. CHALLENGES IN INDUSTRIAL EMBEDDED SYSTEMS

As an answer to the growing complexity issues of com-
puter systems, hardware vendors introduced a multi-processor
system-on-a-chip (MPSoC) architectures. The goal is to inte-
grate multiple systems on a single chip with the possibilities
to share its infrastructure without interference, and to save
on physical space and energy consumption. Embedded indus-
trial applications are currently facing a number of imminent
challenges and the MPSoC technology provides an alternative
solutions to these problems:

Performance. A major problem for industrial embedded
applications, especially for the applications with safety and
real-time requirements, is how to replace single-core CPUs
with multi-core CPUs in order to achieve better performance.
Integration of safety-crtical applications on multi-core archi-
tectures is a hot topic both for designers and for the certifi-
cation authorities [3]. The multi-core architectures provide the
necessary performance increase for industrial applications, but
they provide very little support for the integration of multiple
safety-critical applications or mixed-criticality applications in
a way that the performance gain is preserved. Specifically, a



sufficient spatial and temporal isolation of components cannot
be achieved.

Time predictability. The difference between embedded in-
dustrial applications and general purpose applications is that
they are often under constraint of time. Also, co-ordination of
different tasks is necessary to achieve the time constraints.
Multi-core CPUs are not designed with sufficient level of
determinism due to intensive use of shared resources towards
better performance. Hybrid SoC architectures can be molded
into a system with high level of determinism and sufficient
performance.

Power Consumption. Environmental challenges have lead
the industrial community to make a significant effort in lower-
ing the energy consumption of computer systems. Reducing the
number of physical computer components in a system reduces
overall power consumption. Further, selective and modular
operation of a system provides more room for optimization of
power consumption of individual system components. Mixed-
Criticality Integration. As the general population is getting
more and more dependent on internet based services (i.e., com-
munication, personal organization, navigation) and as systems
provide better capabilities for partitioning and segregation it
is expected that non-critical functions will get integrated with
safety-critical and real-time systems. The MPSoC technology
offers these abilities almost by default.

Adaptation. Embedded industrial application are often de-
ployed in harsh, inaccessible and stochastic environments (e.g.,
space, deep sea). It is important that the corresponding com-
puter system is able to adapt to environment changes without
loss of functionality. If an unforeseen event brings a system
into a failure state, the ability to adapt can prolong the life of
a system, and ensure reliability until the system is returned to
a safe state. An MPSoC is set of hardware components, where
a component can be used to monitor and change a state of
another component without influencing the rest of the system.

Heterogeneity. A specialized hardware like a digital signal
processor (DSP) or graphics processing unit (GPU) is much
more efficient in handling some tasks than a standard CPU.
Heterogeneity ensures efficiency by allowing applications to
be mapped to the core whose execution will ensure best
requirements coverage. Heterogeneity of its requirements. It
also provides versatility and mixed-integration capabilities.

It is clear that all these challenges are highly connected
and mutually dependent, this is why a solution must be
universal, rather then ad-hoc solving one problem at the time.
New technologies provide capabilities to implement alternative
hardware architectures and evaluate them on real-life scenarios.

III. ACROSS MPSOC

The ACROSS MSPSoC [1] is a many-core architecture
implemented completely in an FPGA. At the core of the
MPSoC is a time-triggered network on chip (TTNoC). It
connects eight independent host components based on soft-
coded Nios2 processors. Each components (also called µ-
Component) is fully functional embedded system with local
memory and set of input/output peripherals (IOs). The TTNoC
uses encapsulated communication channels and special linking
interfaces to interact with µ-Components. Four µ-Components

are used as system components performing system, config-
uration and maintenance functions (i.e., global time service,
mass storage, monitoring services, IO services). Other four µ-
Components are reserved for application software. The appli-
cation components share system components and their services
in full temporal and spatial isolation provided by TTNoC. The
MPSoC provides two levels of of fault-tolerance: The on- and
the off-chip fault-tolerance. Each component is a fault contain-
ment unit and the MPSoC is considered as error containment
unit. The architecture was designed using a services-oriented
approach, and it offers three types of services: core services,
optional services, and application-specific services. The core
services handle platform related tasks (e.g., basic communica-
tion). The optional services provide extended functionality to
core services and can be modeled on a specific requirements
set (e.g., security). The application specific services are user
level services implemented on top of the core and optional
services. The ACROSS MPSoC is implemented with a unique
set of IO connections to allow cross-domain integration.

IV. HYBRID SYSTEM-ON-A-CHIP

This paper explores the capabilities of the state-of-the-art
FPGA devices and their ability to serve as an alternative to
COTS multi-core processors. Specifically, a crossover device
between these two technologies is being explored. In this paper
it will be called a hybrid SoCs. The hybrid SoC is a device that
combines FPGA and a hard processor on a single chip. FPGA
devices are used extensively in embedded applications, espe-
cially in signal processing and communication devices. Most
frequently it is used as a secondary device for specific tasks
in a system. An FPGA is a programmable hardware, it can
be used to emulate hardware functions or to execute software
modeled in the hardware like logic. It provides a platform for
prototyping of hardware or a tool for software acceleration.
Recent advancements in FPGA production technology enabled
significant increase in the capacity and performance of the
FPGA devices. Figure 1 shows how the FPGA technology
advanced in recent years, as an example we compare number
of fundamental logic blocks of two major FPGA vendors and
their flagship devices (Logic Elements (LE) for Altera, and
Logic Cells (LC) for Xilinx). It can be assumed that other
properties of FPGA devices advanced in the similar manner.
This puts use of FPGAs as an alternative hardware architecture
in a wider spectrum of industrial embedded applications (i.e.,
ACROSS MPSoC see Section III).

Fig. 1. Development of FPGA devices in recent years in reference to number
of fundamental logic blocks [4], [5].



The rapid FPGA development trend correlates with the
introduction of hybrid SoCs. The FPGAs are flexible and
can be used to implement almost any function, hardware or
software. However, the implementation of standard hardware
architectures on FPGA is performance limited. On the other
side standard hardware architectures lack flexibility. The use
of both devices in an interlocked architecture is relatively
common (e.g., [6], [7]). The integration of the same devices
on a single chip provides more performance, lower latencies
and the possibility to directly augment one or the other device
and build custom architectures. Most notable architectures are
Zynq from Xilinx [8], Cyclon V and Arria V form Altera [9],
[2], and SmartFusion2 from MiroSemi [10].

The hybrid SoC architecture provides a new dimension
for embedded designers. The advantages of combining both
devices can be utilized in a joint system with a low latency.
In this paper we present a custom built architecture which
integrates both FPGA and CPU in a reliable and deterministic
fashion. The prototype platform chosen for this purpose is
Altera Arria ST SoC (see Figure 2).

A hard processor implemented on this platform is the
ARM Cortex A9 dual-core processor. It is a central part of a
system called a hard processor system (HPS). It also includes
a direct interfaced 1 GB DD3 memory, 32KB of instruction
and data L 1 cache per core, shared 512 KB L2 cache
memory, QSPI flash memory and a generic set of IOs (e.g.,
USB, UART, Ethernet, GPIOs etc.). The second component
on the chip is an Arria V FPGA. It is a medium capacity
programmable fabric (460K LEs) device. The FPGA has two
direct interfaced 1 GB memory modules, an FPGA specific
set of control and programming devices and a generic set of
IOs. The communication hub on the chip is a L3 interconnect,
that connects HPS with the FPGA and board peripherals.
The interconnect has three dedicated AXI bus bridges for
the communication between HPS and FPGA: HPS-to-FPGA,
FPGA-to-HPS and a lightweight HPS-to-FPGA. These allow
mutual exchange of resources and full cooperation between
two systems. The block diagram of the Altera Arria V ST
SoC development board is shown in Figure 2.

How does the hybrid SoC respond to the challenges in
industrial embedded applications? When it comes to perfor-
mance, a recent survey reports that an embedded systems
runs on ≤ 500 Mhz processors in average [11]. The hybrid
SoC is able to match that on the HPS side and ensure even
better performance. The FPGA is able to provide additional
dedicated cores or components which can be used accelerate
tasks. It also provides a platform to integrate diverse systems
without physical or logical overlapping. This is essential for
mixed-critical and cross domain systems. Clustering of systems
on a single chip ensures efficient power consumption. The
operation of the two systems are independent and ensures the
isolation required for safety critical applications. Soft-coded
components also allow full segregation even within FPGA. An
other aspect of hybrid SoC which supports modern embedded
applications is the capability to reconfigure one or the other
system on run-time. For the future adaptive systems this
enables more flexibility where even hardware configuration
of the system could be completely changed during run-time.
Recent reports are predicting a huge improvement in hybrid
SoC technology in the coming years. This ensures longevity

Fig. 2. Arria V ST SoC development board and a block diagram of the
corresponding architecture.

of the solutions built using this technology [12].

V. TIME-TRIGGERED MULTI-PROCESSOR
ARCHITECTURE ON HYBRID SOC

The evaluation of the ACROSS MPSoC in industrial
demonstrators has confirmed the predicted assumptions in
achieving mixed-criticality and cross domain integration using
this architecture as valid. The goal of the architecture presented
in this paper is to integrate high performance components,
and build a basis for a more generic setup with the focus
on a modular interface defined integration of components.
The design of embedded applications often includes over
dimensioning to ensure longevity of a product, especially in
industrial domains where the design and certification pro-
cess requires extremely large efforts (e.g., avionics systems,
aerospace, industrial automation). it is essential to evaluate the
scaleability, portability and the platform dependence of the
architecture.The integration of TTNoC-based architecture on
hybrid SoC shows promising results for a large spectrum of
industrial embedded applications.

The ACROSS legacy architecture was designed to host
a specific set of applications and provide a specific set of
services. A number of these services are platform dependent,
so porting the whole architecture was unpractical. To translate
the architecture to the new platform a number of the com-
ponents needed to be adapted. The communication backbone
remained unchanged just with slight modifications to conform



Fig. 3. Block diagram of the deterministic MPsoC architecture on hybrid
SoC.

the platform and current programming toolchain. The essential
parts of the communication backbone are: TTNoC, trusted
interface subsystems (TISSs) and trusted resource manager
(TRM).

The TTNoC consists of fragment switches that enable
routing of traffic and global time propagation. Each fragment
switch is a module with four bi-directional channels for mes-
sages and additional signals for propagation of a system wide
global time. The fragment switches are combined together to
create a network-on-chip. The size of the NoC depends on the
number of fragment switches and it is bounded.

The TISS is a communication interface between the
TTNoC and a µ-Component. Although, it is basically a part
of a µ-Component, it is required if the components is to be
integrated in the TTNoC. The TISS is connected with the
CPU of a µ-Component via dual-ported memory, local to
the µ-Component, and interrupt signals for task triggering. It
also provides an instance of the system-wide global-time for
the µ-Component. The global time is an essential property
of a deterministic architecture, as it enables time-triggered
communication, coordinated execution of tasks and improved
fault-tolerance capabilities for the components [13]. The TISS
is also the host for the configuration files necessary for time-
triggered communication and task triggering. These can be
only accessed and modified by the TRM component.

The TRM is the µ-Component responsible for maintenance
and configuration of TTNoC and corresponding TISSs. It
contains a tick generator which provides the basis for the
system wide global time. The second important task of the
TRM is the configuration of TISSs. The TRM is the only
component allowed to change the state of the configuration
memory of a TISS. All the soft-coded components were com-
pletely rebuilt and integrated into the MPSoC. The goal of the
current implementation of the MPSoC is to create a basis for
a platform and application independent architecture. Namely
the intention is to fully utilize Altera’s system integration tool
QSyS [14] and build a system in a fully modular way. The
Nios2 components are therefore designed on a generic model
with clearly defined interfaces. This allows easy adaption of
the components to service or application specific requirements,
and simple integration of new components to the system.

One of the advantages of the TTNoC architecture is the
ability to connect heterogeneous components. The CPU of the

component must be able to interface the dual-ported memory
and receive interrupt signals. The Arria V ST SoC allows
direct coupling of IP modules implemented on FPGA with the
HPS system over the aforementioned interfaces (see Section
IV). This enables direct integration of the HPS with the rest
of the MPSoC. The new component is also represented as a
single module in the integration tool, although it is composed
from building blocks located on both on FPGA and HPS.
The coupling requires two interfaces one for the data transfer,
or interfacing the local port memory and the other one for
the routing of interrupt signals. Figure 4 shows the HPS
component and the way it is connected to the TTNoC over
TISS.

Fig. 4. Block diagram of the HPS connection to the TTNoC

The heterogeneous approach increases fault tolerance ca-
pabilities by adding another layer of fault/error containment
within a chip. Although they are physically parts of the
same chip HPS and FPGA modules are fully independent.
On the FPGA there is a soft fault containment between µ-
Components. The integration of the HPS component adds an-
other fault tolerance mechanism to the whole architecture. The
isolation between HPS and FPGA enables error containment
units on both devices. The mechanisms built in the platform
allow reconfiguration of individual devices if the other one
fails. The MPSoC is capable of phase synchronized operation
with another MPSoC. This can be used to replicate components
and provide off-chip fault tolerance.

The architecture currently uses a static configuration as
it is considered as a basis for certification. Next step in this
direction would be to explore possibility of dynamic adaptation
and reconfiguration. The hybrid SoC allows reconfiguration of
the SoC during run-time, this ability can be utilized by the
overlaying MPSoC architecture. Further, the HPS component
provides new possibilities but it also adds to the complexity
of the system. The HPS has relatively complicated memory



hierarchy and it is essential to map an application based on its
safety requirements and fault hypothesis with the capabilities
of the HPS component. This is also important for standard
multi-core architectures. Other applications of HPS component
include a runtime monitoring and verification, which are
essential for the dynamic adaptation and reconfiguration.

The initial tests of the proposed hardware architecture
showed successful integration of the above mentioned com-
ponents with the TTNoC. This includes functionality test
of individual hardware components. The integration of HPS
component in the MPSoC is successful. The modular approach
provides ability to extend or reduce the MPSoC’s number of
components in an simple and efficient way. The first step
was to rebuild and adapt the hardware components on to
new platform and implement HPS component, also to ensure
the functionality of the communication backbone. Additional
results will be provided in an extension of this paper, as
a support software, applications and evaluation are still in
progress.Next chapter provides a short overview of the archi-
tecture’s implications on two industrial use cases.

VI. INDUSTRIAL EMBEDDED SYSTEMS CASE STUDY

The motivation behind the work presented in this paper
comes from industrial embedded applications. The spectrum
of applications for the proposed architecture is wide as it is
shown in [1]. In this section provide an overview of a couple of
use cases, and discuss how they can benefit from the properties
of the presented architecture.

1) Automotive control units (xCU): The automotive indus-
try is represented with a high number of units per year and
it needs to be in a continuous state of innovation in order to
ensure an economic progress. A recent reports show the au-
tomotive industry produced about 90M vehicles last year[15].
A survey shows that major drivers behind the innovation in
the automotive industry are fuel efficiency and safety. The
same survey reports that four important upcoming innovations
in the industry are: electric and hybrid power-trains, internet
communication, car-2-car communication, car-2-oem commu-
nication, and predictive consumer analytics [16]. How does this
reflect on the embedded systems within automotive industry?
The conclusion is that the these systems should be able to
host multiple applications from different safety zones, and
ensure a required level of safety for all of them. How does the
proposed architecture answer to this challenge? It is capable of
running both safety critical and non-critical applications at the
same time. The HPS component provides more than adequate
performance capabilities for the present day applications and
and future applications. It provides a specific fault hypothesis
model two layers of on-chip fault tolerance, and a promising
approach for off-chip architecture. The work presented in
[17] shows how the similar architecture can be used as an
automotive xCU. The clustering of the xCU on an MPSoC
is shown to be an efficient alternative to implementation of
automotive applications on high-performance COTS multi-
core architectures. Clustering of xCU in complete isolation on
MPSoC provides obvious advantages. For example, consuming
less physical space reduces weight and power consumption.
Which in effect reduces fuel consumption and increases overall
effectiveness.

2) Space on-board computers: Contrary to the automotive
example the space sector has low unit numbers and completely
different innovation focus. The production of space equipment
requires high amount of efforts, due to harsh environment and
limited ability to perform repairs and changes. The applications
in space are more mission critical then safety critical. Never-
theless, they face similar problems when it comes to hardware
architectures [18]. Both, seek to reduce number of on-board
computers, increase performance capabilities at the same time,
and ensure energy efficiency. The space applications also
require high adaptation capabilities. The costs of deploying and
producing such a system are large, therefore the lifespan of the
product must be substantial, and all components must be fault-
tolerant. The mechanisms like adaptation provide the ability to
prolong the life of the system by enhancing it or reducing its
functionality (e.g., by removing non-essential parts a system
can perform basic functions for a longer period). The proposed
architecture offers integration of multiple applications on a
single chip, with several layers of fault-tolerance. The hybrid
SoC ensures ability to change the configuration if necessary of
each device on runtime by the other one. The heterogeneous
integration is also very important for the space sector, as its
applications operate with large amounts of physical signals that
can benefit from dedicated hardware components.

VII. FUTURE WORK

At this stage the work presented contains a hardware
architecture and rudimentary software support. In this chapter
we present some of the additional actions included in our
future work on this topic. As stated in the introduction the
goal is to evaluate scaleability of the system by experimenting
with different setups of the architecture. The heterogeneous
approach is already integrated in the architecture, but there is
still room to expand it by integrating additional components
based on other CPUs. One of the concrete examples is the
integration of the Leon3 SPARC soft-coded processor from
Geisler [19]. The Leon3 has a fault-tolerant version and it is
highly utilized in space domain embedded systems. The second
goal is to ensure efficient portability to future generations of
the platform as well as the platform portability. This would
contribute to a more general use of the architecture.

VIII. RELATED WORK

The MPSoC related research has produced a high number
of publications in recent years. With the introduction of hybrid
MPSoC the availability of these systems increased dramati-
cally, and so has the interest of the community. The research
on MPSoC is also the vocal point of several major research
initiatives in EU. Projects ACROSS [20][1], MultiPartes [21],
ARAMIS [22], EMC2 [23] are all investigating the introduc-
tion of multi-core and MPSoC architectures in the domain of
safety critical and mixed-critical systems.

The automotive industry is a highly interesting domain for
MPSoC platforms.The author in [24] provides a demonstration
of vehicle powertrain implementation using Xilinx Zynq [8]
platform. Although it is a dedicated solution for a single appli-
cation it is still showing the extent of the MSPoC’s capabilities.
The authors in [25] provide a mapping of AUTOSAR [26] to
the MPSoC based architecture. Another example of MPSoC
application for automotive use case is presented in [27]. The



paper provides a framework for dynamic allocation of task to
MPSoC components. It can be noticed that the hybrid SoC
is most frequently used as application oriented systems. The
capacity of the hybrid MPSoC to be used as generic platform
for industrial embedded systems is still to be explored.

The use of hybrid MPSoC applications stretches on multi-
ple industrial domains. The authors in [28] give a survey on us-
ability of the hybrid SoCs in the avionics domain, specifically
on the Xilinx Zynq platform. In [29] the authors explore the
capabilities of the hybrid MPSoC platform to perform dynamic
partial reconfiguration. These are only some of the works
focused around hybrid MPSoCs. The direction of development
of major hardware vendors confirms this statement [12] [30].

IX. CONCLUSION

This paper presented a heterogeneous MPSoC architecture
featuring a time-triggered network-on-chip implemented on
a hybrid SoC platform. The advantages of the hybrid SoC
are used to enhance an an earlier version of the MPSoC
with the hard processor component built on ARM Cortex C9
processors. In addition to the HPS Component other novel
aspects are included in the process. A generic modular design
as the basis for model oriented development, adaptation and
dynamic reconfiguration. We discussed the benefits of this
architecture, on a couple of use cases, and shown the potential
of this approach. The hybrid SoC technology is becoming
more available every day, and its capabilities are increasing
accordingly. The proposed MPSoC uses this technology to
build an architecture capable of hosting industrial embedded
applications with even most demanding requirements.
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ABSTRACT

A Cyber-Physical System (CPS) describes a system or a system-of-systems closely and actively coupled 
with environment. It comprises the digital intelligence system, a co-dependent physical system (i.e., 
electrical, mechanical) and the system environment. Since the beginning of modern computer systems 
integration was ever present challenge, from the huge single room computers to the IoT. Today applications 
interleave and build larger systems with different system requirements and properties. Implementation 
of safety critical applications together with non-critical applications within the same platform is almost 
inevitable in modern industrial systems. This article provides a retrospective overview of the major in-
tegration challenges and the current problems in mixed-criticality environments. Finally, it provides an 
insight in a hardware solution which creates deterministic platform for mixed-criticality applications.

1. INTRODUCTION

The topic of cyber-physical systems (CPS) is an interdisciplinary subject that connects computer 
engineering and computer science with other disciplines like electrical, mechanical, chemical and 
bio-engineering. In essence, it provides a shell for the system design which binds digital and physical 
world in a compact methodological form. It provides a better understanding of the system from various 
perspectives, it increases time to market and overall efficiency of the product. This concept was crafted 
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as a response to the increasingly complex structure of modern systems. The advantages of computer 
driven physical systems were recognized in the early stages of the computer development timeline. The 
physical systems controlled by a computer would reach their physical limits much rapidly, they were 
getting upgraded more frequently and in conclusion getting more complex. The initial approach of the 
system design was highly segregated in means of engineering disciplines. For the most part physical 
components of a system would be designed according to the techniques and methods used in a specific 
discipline, and then interfaced with a specific computer system. This approach provided a relatively 
clean design methodology, but as the systems got more complex it was more difficult to ensure that 
the functional properties of the system conform to the system specifications and regulatory guidelines. 
The work presented in this chapter reflects on the challenges present in the domain of mixed-criticality 
systems and the overcoming need for seamless integration. It also offers a viable solution based on a 
time-triggered architecture implemented on a hybrid system-on-a-chip platform. This novel approach 
to create a modular configurable deterministic hardware architecture combats core problems of indus-
trial computer systems, where safety critical applications interact and operate under same conditions as 
non-critical applications. This closely coupled relation is extremely complicated on a commercial off 
the shelf (COTS) hardware. It is also highly expensive in terms power consumption, performance and 
utilization. The presented architecture enables clear separation between different tasks in space and time 
without performance loss. The extended plans foresee a tool chain integration to increase the ability to 
build an application directly from hardware level up.

1.1 Chapter Outline

This chapter provides a short reflection on mixed-criticality integration in cyber-physical systems. It 
explores the challenges and basic properties for the seamless integration not only user applications, 
but also underlying platform components, hardware, software and the physical environment. Section 1 
gives a short introduction in cyber-physical systems and mixed-criticality integration, in particular Sec-
tion 1.1 gives a short historical summary of the cyber-physical systems and turning points that lead to 
the modern state of CPS. Also, Section 1.3 gives an overview of the major challenges or objectives for 
mixed-criticality integration. Further, Section 2 gives a brief introduction in the background knowledge 
on the relevant topics. First, Section 2.1 describes spatial and temporal isolation as vital properties in 
the design of systems for mixed-critical integration. Section 2.2 introduces an innovative computer 
architecture that combines a hard-coded computer processing units with an FPGA device on a single 
chip, it is a synergy of different approaches and a product of merging knowledge from two different 
directions. Further, Section 2.3 describes an architecture built for mixed-criticality integration based on 
time-triggered communication and FPGA technology. Section 3 provides a description of the architec-
ture that merges technologies described in Sections 2.2 and 2.3. Section 4 offers a brief overlook on the 
presented architecture and its ability to meet the challenges described in Section 1.3. The ability of the 
architecture to resolve practical issues has been shortly visited in Section 4.1. Finally, Sections 5 and 6 
provide future work potentials and closing thoughts.
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1.2 A Historical Overview

• The Origins: The name cyber-physical system was derived from the term “cybernetics”, which is 
used to describe systems that used closed-loop feedback control. The term was introduced by an 
extraordinary 18th century physicist and mathematician A.M. Ampere (Ampère, 1838), and later 
revived by a 20th century mathematician and pioneer of modern control theory Norbert Wiener 
(Wiener, 1961). However, use of the term cyber-physical system was adopted as recently as 2006, 
it is used as an umbrella for all computer controlled systems that in one or the other way interacted 
with the physical world around it.

• The Computer: The first computers were originally created with a purpose of performing com-
plex calculations, they were big machines installed in large rooms with highly complex structure 
and handling. As the computers became more accessible and affordable their services were ad-
opted in other disciplines i.e., manufacturing, space, robotics, and consumer appliances.

In the 1950s computers were first applied in a control of industrial equipment, in the process called 
computer assisted manufacturing (CAM) using Automatically Programmed Tools (APT) language, 
it was a system designed to control a milling machine with a help of a computer (Ross, 1978). These 
machines were forerunners for the modern computer numerical control (CNC) machines and computer 
aided manufacturing. However, 1960s is the time when the age of computers really began, more and 
more fields in civil and military domains started using computers for various purposes. In 1961 a first 
mass-produced industrial robot UNIMATE was integrated in the production lines at General Motors 
(Nof, 1999). Around the same time, NASA included first digital computers in space programs Gemini 
and Apollo (NASA, 2016). This was followed by an introduction of the first commercial minicomputer 
DEC’s PDP-8 (DEC, 1967). In the 1970s the development of computerized systems was highly acceler-
ated and commercialized, new actors in computer technology development (i.e., Intel, Microsoft, HP, 
etc.) emerged and set the course for the next few decades.

• The Microprocessor: With the development of micro processing a huge spotlight was set com-
puter architectures for personal computing, bringing computer aided development in completely 
new areas and disciplines. The micro processing found its way in other applications like control 
of fuel injection in cars or handheld calculators. The whole surge of new application was followed 
by a massive change in software as well, new computer languages like Pascal or C were intro-
duced. (Wirth, 1971) (Kernighan & Ritchie, 1978). There was also a strong breakthrough of mass 
networking systems with Teletext information system and research-oriented network ARPAnet 
(BBC, 2012) (O’Regan, 2012).

• The Embedded World: The development of micro-controllers in 1980s enabled mass utilization 
of embedded computer systems in new applications, from industrial machines and communication 
devices to consumer electronics, and entertainment systems. In 1981 a first prototype for the direct 
drive arm was proposed, it shared the same basic principles used in industrial robots today (Asada 
& Kanade, 1983). An introduction of small-sized computers and networking breakthroughs influ-
enced put high accent on communication disciplines. In 1983 Bell Labs introduced a first mobile 



172

A Mixed-Criticality Integration in Cyber-Physical Systems
 

phone communication standard called Analogue Mobile Phone System (AMPS). It was embodied 
in a first commercial mobile phone Motorola DynaTAC 8000X (O’Regan, 2012). At the same 
time, multi-annual research efforts to build more flexible hardware resulted in the development of 
first Field-Programmable Gate Arrays (FPGAs). In 1985 Xilinx released their first FPGA device 
(Trimberger, 2012). It is a programmable logic device that can be customized for a specific appli-
cation by a user. It combines logic blocks with programmable interconnects and multiplexed sets 
of IOs. The FPGAs changed the view on product development, allowed high integration capabili-
ties and faster time-to-market (Carter, 1994). The development of FPGAs remained one of the 
most vibrant fields in computer science and electronics.

• The Network: The development of mobile phones was followed by networking revolution and 
introduction of OSI model, and consequently the invention of World Wide Web by Tim Berners-
Lee. The interaction between systems and distributed computing became critical topics in in-
dustrial and scientific circles. The distributed computing was a significant change to the legacy 
systems that operated completely in isolation. At this point computers were already on multiple 
levels: large mainframe and server computers, personal office or home computers, and embedded 
or small-scale integrated computers. The high level of interaction between individual units had 
been already available for the first two groups, however, it was still relatively new in the scope 
of embedded systems. The distributed embedded systems yielded the term “Feldbus”, it symbol-
izes a network of local field level devices with a focus on reliability, availability and safety of the 
system. They provided the ability to control processes efficiently and in real-time (Kopetz, et al. 
1989). Throughout 1990s trends of miniaturizing chips and increasing connectivity among system 
continued. The personal computers became a common tool in both business and private sector 
(see Figure 1). The number of networked and distributed embedded systems increased immensely, 
for example a number of mobile phone subscriptions had an average growth of 36% of new sub-
scribers per year over the period between 1984 and 2003 (see Figure 2).

• The Model: The initial computer controlled systems were built to explore the capabilities of this 
new technology and with focus on basic functions. In most cases, they represented ad-hoc solu-
tions with a low dependability level. A major challenge at the time was to ensure reliability of the 
systems even for the applications that required strict safety insurance levels. The challenge of sim-
ply creating efficient computer system and applying it was not the largest problem anymore. How 
to make it safe and reliable for all applications was a question more difficult to answer (Bowen & 
Stavridou, 1993). At the same time, there was a strong shift towards knowledge based or model 
based design of systems in computer engineering. A model based design reduces building efforts, 
system testing and maintenance efforts of complex systems (Studer, Benjamins, & Fensel, 1998). 
A first version of Common Object Request Broker Architecture and Specifications (CORBA) was 
released in 1991, and up to these dates it represents a state-of-the-art framework for integration 
of heterogeneous systems (Vinoski, 1993). The networking increased efficiency of the system in 
a number of ways, but it created a huge space for other obstacles in system design and operation 
i.e., synchronization and coordination, security and integration. A guideline of security standards 
and principles by NIST in 1995 identifies integration as one of the basic elements in the design 
of secure systems (NIST, 1995). The integration understands connecting systems and subsystems 
using hardware, software or physical interfaces such that they operate as a single functional unit, 
providing emerging functionalities that are impossible to implement using individual components.
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Figure 1. Number of mobile cellular subscribers in United States per 100 people: 1984-2003
The World Bank Group, 2016.

Figure 2. Number of mobile cellular subscribers in United States per 100 people: 1984-2003
The World Bank Group, 2016.
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• The Integration: The technologies that followed were designed with seamless integration as one 
of the basic architectural requirements. Despite the fact that mobile telephony, used means of 
wireless communication since 1980s, the traditional cable operated computer networks officially 
migrated to wireless communication in 1997 with the release IEEE 802.11 standard (IEEE, 2016). 
It also stimulated industrial driven research and development of various wireless sensor networks. 
The service-oriented architectures, multi-core and system-on-a-chip (SoC) architectures represent 
a next step in the evolution of computer systems. The first originated in mainly in the domain of 
the Internet, and then transcended to industrial applications over time (Blomstedt, et al. 2014). 
The idea of multi-core architectures was present for a long time, however it was limited by the chip 
production technology. Increasing performance of single-core chips also increased their complex-
ity, to manage this instead of increasing performance of the single-core the developers find a way 
to multiply cores on the chip. Moreover, the SoC principle was already implemented in microcon-
trollers and the improvement of chip production technology allowed this technology to scale up 
and implement high performance systems on a single chip. The introduction of multi-core chips 
was mainly driven by performance, where the SoCs were designed with priorities on efficiency 
and economic integration with focus on embedded devices and industrial applications.

1.3 Challenges for Mixed-Criticality Integration

Although mixed-criticality question was forced from a safety perspective, it can be easily projected on 
other system properties i.e. security, fault-tolerance, performance etc. At the same time, it represents the 
ability of the systems to perform multiple tasks with different priorities and a way to perform system 
optimization. It is basically an integration/optimization problem, merging multiple components (e.g., 
electronic control units (ECUs) of a car) of a system in a single functional unit with emerging benefits 
in the likes of cost, performance or power consumption.

• Performance: When it comes to performance the computer systems surpass current demands 
of industrial applications. As an example, modern multi-core processors are capable of serving 
multiple applications without using maximal capacity. However, they are lacking in efficiency 
and reliability and this is why industrial applications, especially safety critical applications, still 
heavily rely on single-core processors and SoCs. Moreover, the single-core processors are being 
outgrown by the state-of-the-art applications. The chip manufacturers are abandoning single-core 
production and turning towards more profitable products. The numbers of non-essential appli-
cations (e.g., smart phone car control) and smart technologies (e.g., advance driver assistance 
system (ADAS)) are increasing rapidly. Having a safest or most reliable cars are not necessarily 
deciding factors anymore when selling or buying a car. A modern user experience and comfort in-
spired by other fast growing consumer electronics products translate also in automotive and other 
industry domains, traditionally more concerned with properties i.e., safety, security and reliability. 
Integration of all these emerging functions together with basic essential functions is a challenge.

• Determinism: The functions are divided into tasks, each task has a different set of requirements 
(e.g., real-time, safety, security). Different tasks have different priorities and the system must 
ensure that the functions with highest priorities (e.g. braking system, engine control) perform 
their tasks uninterrupted. At the same time the system must provide best efforts to ensure that 
all functions are available. Multi-core architectures use complex and nondeterministic memory 
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hierarchies and inter-core communication, and highly improbable to provide sufficient guarantees 
that a high priority task will finish its execution on time and not get interrupted by any other ac-
tion. Single-core platforms are slowly being retired, as they are becoming obsolete in terms of 
performance and efficiency. However, they are still the best option for a deterministic hardware 
architecture. A big question is how to ensure needed performance and ensure the necessary level 
of deterministic behavior for different applications or sets of applications?

• Optimization: A way to deal with the above-mentioned issues, is to increase the number of com-
puter units in a system and provide complete hardware and software isolation of different func-
tions. This would enable an increase of system functions and maintained the classic approach on 
cross-critical integration. On the other side, it would increase the complexity of the system and 
reduced overall efficiency. A good example is the automotive industry. The number of electronic 
control units (ECUs) in an average personal vehicle almost doubled in the last ten years and it 
currently ranges between 50 and 100 ECUs, depending on the size and class of the car (Johnson, 
Gannamaraju, & Fischmeister, 2015). Alone weight and power consumption of those ECUs and 
the wires that connect them are significant factors in the fuel economy of a car. The efforts re-
quired to ensure error-free operation from design to testing is also a significant factor in the overall 
economics of a vehicle. It is clear that merging individual ECUs in “larger” mixed-functionality 
units could result in reduced overall weight, power consumption, complexity, and space. An ad-
ditional aspect is the development process these systems. Figure 3 provides an illustration of a de-
velopment process in CPSs, although it provides just a portion of an actual development procedure 
it demonstrates the complexity level of the task. It usually includes several often-incompatible 
tools for collecting and verification of requirements, for design and configuration of hardware, 
system software, communication, applications, and for analysis, testing and certification of the 
system. The optimization of systems is equally challenging and important as optimization of the 
design and development process of these systems.

• COTS: Designing a hardware platform specifically for an individual application or a set of func-
tions is must be economically justified. The number of manufactured and sold units must justify 
the amount of efforts to build such a system. Such platform provides the exact intended function-
ality, but it enables very little flexibility and it requires significant costs compared to COTS solu-
tions. On the other hand, COTS solutions are generic and they are designed for multiple purposes, 
which means that they are rather limited when it comes to specific niche applications. One of 
the major challenges is how to build a system platform flexible enough to integrate multiple do-
main applications and combine functions with different levels of criticality using generic COTS 
platforms?

• Taxonomy: The classification of systems according to stakeholder requirements and system prop-
erties is another large issue. The spectrum of system requirements depending on the domain and 
application type can be vast. System properties i.e. Reliability, safety, security is complementary, 
however, one doesn’t necessarily guarantee the other. The reliable system doesn’t always repre-
sent a safe system, and unreliable system can be safe (Rushby, 1994). Similar conjunctions can be 
established with other properties, so it is important that a system is correctly classified from the 
start. Different properties have different levels of criticality, they also have different domains of 
implementation. Some properties are implemented in hardware, where others are provided by a 
software program or realized using mechanical or electrical mechanisms. If the system is defined 
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appropriately in all domains, unnecessary redundancies could be avoided, thus saving efforts and 
reducing cost.

• Modeling: A CPS is a set of systems co-dependently operating in different domains. On one side, 
there is an analog domain, described using continuous mathematics, it represents the physical 
world in CPS. On the other side, there is a digital domain. It uses discrete mathematics and it rep-
resents the computer realm. Models are used on both sides to describe the system and to provide 
designers with a chance to evaluate its basic properties before they actually start building it. A 
number of modeling tools and languages used on both sides is enormous. To ensure interoper-
ability, traceability and verification between different models is a task that needs to be undertaken 
at multiple levels of in the CPS design process. It is one of the crucial requirements for mixed-
critical integration in CPS.

Figure 3. An abstract illustration of a design and development process in CPSs
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2. BACKGROUND

A single hardware platform to host multiple functions using software based separation solutions could 
be an optimal solution for cross application and cross domain integration. This needs to be supported 
throughout the design process of a system, from the models of the physical part to computer hardware 
and software. The SoC platforms have emerged as a bridging solution for this problem. They are able 
to integrate multiple processors with different performance characteristics, together with other compo-
nents (e.g., memories, peripherals) which can be tailored for a specific domain, specific application or a 
specific set of functions. Moreover, a new generation of SoC that integrates a hardcoded processor with 
flexible FPGA devices are being utilized to create platforms for development of CPSs. They ensure a 
sufficient level of dynamicity where at the same time are able to provide enough performance to host 
state-of-the-art industrial and consumer oriented applications.

2.1 Spatial and Temporal Isolation

Mixed-criticality integration relies on a group of basic system properties. Most of all, separation or 
isolation of individual tasks or functions must be guaranteed. Each task must be ensured that during its 
operation all required resources are available. A given task can be a simple software computing routine 
which requires only computing resources i.e., processor and corresponding memory infrastructure. De-
pending on constraints of the given task the extent of the resource’s availability and readiness level it’s 
determined. If the task is hard real-time, the result of the tasks must be delivered in an only in a given 
timeframe. If the task were isolated, implemented alone on a single processor, with almost private memory, 
it would be easy to reserve a time and a place for it to perform its duties. However, real systems and the 
corresponding tasks are generally more complex. They control functions that rely on a complex chain 
of codependent tasks, a series of peripheral devices for input/output purposes and communication, and 
sensors and actuators for interacting with the environment. To ensure causality of events and accuracy 
of values of different variables all components need to be separated and integrated at the same time. 
System resources need to be shared between the individual tasks and functions, and these need to be 
isolated in the system both in space and time. A spatial isolation guarantees that a task or a function can 
occupy a system resource or set of resources (e.g., memory, processor, communication channel) without 
interferences of any other activities in the system. A temporal isolation guarantees that the execution 
of any task cannot influence the temporal behavior of any other task or function, and that the execution 
time of the task cannot be influenced by the execution of any other task or function.

Most frequent problem for the spatial isolation is memory management. In the modern systems, the 
size of the memory and number of memory accesses is extremely large what makes the duty of manag-
ing them highly complex. It takes a series of hardware components and specialized software routines to 
manage memory during the execution. The memory is a storage device organized in cells and each cell 
is marked with an address, this address also called a physical address. The memory can be accessed by 
a CPU directly via physical address, but there is usually an intermediate component between CPU and 
memory called memory management unit (MMU). It is a specialized component that arranges physical 
memory in a set of pages, addressed by a set of virtual addresses which are then provided to the CPU for 
memory operations. It makes the memory access substantially faster and more efficient. It also provides 
the ability for a system to assign a specific process with section of memory and to control it, such that 
sections from different processes do not interleave. The functionality of the MMU is controlled by a 
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system software, it can be part of an operating system or a dedicated task for this purpose. The MMU is 
a first step towards spatial isolation in modern computer systems. A memory protection unit (MPU) is 
component that ensures no unauthorized memory access is allowed during execution. System software 
provides additional level of isolation, it controls hardware to provide higher levels of software, namely 
application software, required functionality. An operating system is a set of system functions that provide 
the ability for multiple applications to share the same hardware platform. A standard operating system 
ensures that hardware can be used by several applications simultaneously. Each application is divided 
tasks which are then organized in processes, the isolation performs on a process level. More specific 
solutions like microkernel based operating systems or hypervisors provide fully isolated partitions which 
could host whole partitions and even operating systems themselves. In general, even most complex ar-
chitectures provide the ability to host multiple applications and provide spatial isolation. The advances 
in the system software technology (e.g., virtualization) enabled highly advanced control over hardware 
mechanisms and ensured properties like spatial isolation.

The temporal isolation is a multilayer problem which spreads from hardware architecture to design 
and execution of both system and application software. The development of hardware architectures was 
driven by an ever-growing hunger for ability to perform more tasks in less time. As the frequency of 
processors grew faster and memories grew bigger it was essential that data latency between these two are 
reduced to a minimum. This is why a number of mechanisms were introduced to accelerate date transfer 
between CPU and memory. A typical example is the cache memory. It is a high-speed memory built in 
between the CPU and memory intended as an intermediate storage for a date or instructions that might 
be used more frequently. Some parts of a program execute more than others and there are mechanisms 
that predict these repetitions and preloaded them in the cache memory thus allowing the CPU to access 
it faster. The same technique makes it highly difficult to predict the timing constraints for a specific task 
as they are implemented on the instruction level. The execution of instructions in a CPU is measurable 
and the execution time of each task in the CPU can be calculated. The memory access latency can also 
be determined a priory. The caching mechanisms on the other hand, are based on a series of proprietary 
algorithms with little or no reference to timing behavior. Thus, making the system unpredictable. In 
order to ensure temporal isolation tasks or processes need to be evaluated at execution time. This process 
is called static analysis, and its goal is to determine a worst-case execution time (WCET) of each task. 
It represents a maximum time that a task can take to execute. With this value a scheduling algorithm 
determines an execution sequence based on specific constraints, such that any interferences between 
tasks are avoided. Non-deterministic components (i.e., cache) significantly reduce the ability to calculate 
WCET for any task. A partial solution for this problem is an overcompensation, by providing more time 
for execution of a task than initially predicted. However, if the architecture scales up from a single-core 
architecture to a multi-core architecture the ability to provide temporal guarantees drops even lower. The 
multi-core architectures use virtual threads across cores to ensure maximal performance. They are also 
implemented with multi-level cache memories, with each core heaving an exclusive L1 cache, while the 
L2 cache memory is shared among processors. This increases the level of non-determinism immensely. 
This is perfectly understandable as the multi-core architectures were not built for the purpose of temporal 
isolation of mixed-criticality applications.
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2.2 Hybrid System-on-a-Chip

FPGAs and hybrid SoC provide an ability to design a domain and application independent architectures 
which can be configured according to the needs of a specific use case. The process can be integrated within 
the design process of the whole system, thus having application specific integration already included in 
the architecture by design (El Salloum, Elshuber, Höftberger, Isakovic, & Wasicek, 2013). Originally 
FPGAs were used as a prototyping platform where the designers would test hardware components before 
going for a more permanent ASIC solution. As the technology advanced the FPGAs became more reli-
able and are more frequently used in different applications, especially where hardware reconfiguration 
is a system requirement. It ensures longevity of the platform and flexibility if additional applications 
or functions are necessary. It is an economical approach that which allows designers to define certain 
properties of the system already in hardware, which increases overall efficiency of the system. In the 
last decade, FPGAs improved immensely by means of energy efficiency, capacity and pricing. They 
reached the point where they can be used as a viable replacement for standardized, generic components 
in hardware platform design. They are heavily utilized in applications that require hardware flexibility 
and dynamicity (e.g., deep neural learning, satellite on-board computers). Figure 4 illustrates a surge in 
the progress of FPGA technology in recent years.

Some of the most relevant innovations surrounding FPGAs that have been commercialized in recent 
years are hybrid SoC architectures, dynamic partial reconfiguration of FPGA fabric and high-level syn-
thesis (HLS). Although all three concepts are not a novelty as such, they came under focus as of recent 
as the necessary technology became more accessible. All three concepts could be highly important for 
mixed-critical integration and integration as properties in CPSs in general. The high-level synthesis is a 
digital design method that creates digital hardware based on abstract behavioral description (McFarland, 
Parker, & Camposano, 1990). A system described using abstract programming language (i.e., C++) 
is automatically translated into functional hardware components that perform the same task. Having a 

Figure 4. The advancement of FPGA technology in terms of fundamental logic blocks
Altera, 2016; Xilinx, 2016.
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hardware implementation of a function can be manifold beneficial (e.g., performance, energy consump-
tion) and having an automated way to implement it is a great advantage.

The dynamic partial reconfiguration of FPGAs allows the system to change the functionality while 
the system is still operational. A standard way of configuring or programming FPGAs is considered a 
full re-configuration. The idea behind the concept of partial reconfiguration is analogue to the use of 
dynamically linked libraries (DLLs) in software applications, a component or a function is added or 
removed on the fly (Horta, Lockwood, Taylor, & Parlour, 2002). The use partial reconfiguration is suit-
able for the applications built from multiple configurations which are not active at the same time. It is 
the way to optimize the resource management of the FPGA. It can be used to increase the fault tolerance 
of a system in general, by allowing the system to reconfigure certain parts in case of a fault or an error.

The hybrid SoC is a combination of two different hardware design approaches, a multi-core general 
purpose computing architecture and an FPGA device on a single chip. It represents a synergy of two 
concepts that operate on different sides of the application spectrum. The general purpose multi-core 
architectures were designed with the primary goal of increasing performance in general purpose ap-
plications (e.g., personal computers, server computers, multimedia devices). The FPGAs traditionally 
utilized as prototyping devices or used in particular applications where reconfigurable custom hardware 
design enhances overall system performance, ensures flexibility and ability to adapt the system if neces-
sary (e.g., network routers and switches). The hybrid SoC ensures both by intelligently connecting both 
architectures in a single device. It allows both devices to operate in isolation while at the same time it 
is possible to extend one with the other.

The forerunners in hybrid SoCs technology are Xilinx with Zynq 7000 series devices (Xilinx, 2016), 
Altera (as of recent Intel) with Cyclone and Arria devices (Altera, 2016), and MicroSemi with SmartFu-
sion2 devices (Microsemi, 2016). The devices share the same basic concept and all use ARM architec-
tures, the differences are mainly in the FPGA devices and design tools. The hard-coded processor units 
are based on ARM Cortex series devices (i.e., A9, M3).

The interface between ARM cores and FPGAs is established over AXI bus bridges that provide full 
integration of devices in a single system, or partial integration as resources dedicated to each device 
can be channeled directly to the other. They also allow mutual control between the devices, the FPGA 
can be re-configured using the HPS and HPS can be initialized from the FPGA side. This allows more 
flexibility and better fault tolerance capabilities compared to a single device.

The hybrid SoC platforms, alone as a COTS device, provide a favorable environment for hosting 
multiple applications or applications with mixed levels of criticality. However, the full potential of a 
hybrid SoC platform lies in its ability to serve as an excellent foundation for secondary architectures. 
These can be modeled by a specific goal (e.g., deterministic and real-time architecture), or they could 
be designed for a specific domain (i.e., an ECU for the automotive industry), or used to build a specific 
application. The structure of the architecture is respectfully complex, thus making the development 
process potentially error prone, but with the improved tool chain interoperability it can be mitigated. 
As stated above integration capabilities between design tools are equally as important as the integration 
between system components themselves.

The hybrid SoCs do not solve the above stated problems by default, it actually creates an environ-
ment where some of the issues could be resolved more effectively. It is a sandbox problem with the basic 
premises for mixed-critical applications satisfied. The performance of hybrid SoC platforms varies, but it 
it’s safe to say that combined performance capabilities are above the average, if we take into account that 
an average CPU frequency in embedded systems is still below 1 GHz (UBM tech., 2013). The capacity 
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of FPGAs has been increased by multiple factors in the last five years (see Figure 4), this allows more 
functions to be hosted on FPGAs. There are a few basic approaches for implementing applications on 
hybrid SoC platforms:

• A software application hosted exclusively on the hard processing subsystem (e.g., ARM dual-
core). It provides good performance characteristics, but it basically has the same characteristics of 
standard multi-core platforms.

• An application hosted on the hard processing subsystem, with parts of the application implement-
ed on FPGA fabric as a type of an accelerator. This approach is application dependent and could 
only benefit specific cases. However, it might give a significant performance boost.

• An application implemented in hardware with support of the hard processing system. It is a typical 
use of FPGA, and it is favorable only in certain cases.

• Use of heterogeneous approach with both HPS and FPGA active. The FPGAs could host multiple 
generic soft-core based components, dedicated to a specific task or application. It provides mul-
tiple layers of separation:
 ◦ Platform Level: HPS and FPGA
 ◦ Core Level: Multiple cores on HPS, or FPGA, and
 ◦ Process or Task Level: Multiple tasks on a single core.

This approach provides multiple benefits with the ability to separate applications physically as well 
as virtually. It enables multiple instances of the same application, thus providing fault-tolerance. The 
soft-cores could be heterogeneous depending on a type of the function they are implementing (e.g., 
for signal processing a digital signal processor is a more effective mechanism then a standard CPU). 
Although, the soft-cores offer lower performance capabilities with the higher FPGA capacity this could 
be compensated with high number of components. The components could be individual or connected 
via on-chip interconnect in a network-on-chip or a bus topography.

This article provides an overview of the approach an overlaying architecture on top of a hybrid SoC 
platform designed to withhold specific standards and ensure the properties necessary for the mixed-critical 
integration. A similar approach is described in the next sections of this article. Section 3 describes an 
architecture that integrates both devices in a reliable and deterministic fashion. It shows how the hybrid 
SoCs can respond to the challenges of cross-application and cross-domain integration.

2.3 A Time-Triggered Many-Core Architecture

Two main requirements for mixed-critical integration are spatial and temporal isolation. A way to 
separate applications based on resources and ensure the temporal integrity between them. The com-
mercial solutions are driven with performance capabilities, not intended for safety critical applications 
or applications with mixed criticality. A time-triggered many-core architecture ACROSS MPSoC was 
proposed to overcome limitations of the commercial off the shelf solutions (El Salloum, et. al., 2013). 
It uses time-triggered communication technology and FPGA programmable logic to implement a many-
core architecture capable of executing multiple applications, with different criticality levels and with 
different domain of operation. It is using a service oriented approach with trilateral service hierarchy: 
core services, optional services and application specific services.
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The ACROSS MPSoC is a many-core system with eight soft-coded cores organized in self sustainable 
components. Each component was a fully functional computer system. The components were assigned 
particular roles to accommodate service oriented approach. Four components were reserved for core 
services and optional system services, and the remaining four as application components. Application 
components can be interfaced with peripheral devices directly or through system components. The 
backbone of the SoC is a time-trigger network-on-a-chip (TTNoC). A message based communication 
system controlled by a notion of time. Each component was connected to the TTNoC via the generic 
interface called trusted interface sub-system (TISS). A property of time-triggered communication is that 
all members of a network share the same notion of time, called global time. The messages are transmit-
ted between members using a fixed time schedule and it is possible to determine full causality of events 
between components. This enables system to behave in a fully deterministic fashion. The architecture 
implements both spatial and temporal isolation, the properties needed for the mixed-critical integration.

A component includes a single-core Nios 2 processor, tied with a physically independent memory 
unit. The only connection with the rest of the system was trough the deterministic NoC. Thus, each 
component operated fully independent if not otherwise configured. Each component is defined by a 
specific set of IO connections, depending on a component’s function within the system.

The service oriented approach allows use of the architecture for multiple types of applications and 
multiple industrial domains. The core services provide basic properties which ensure that the system 
can be used from a safety critical to a non-critical application. The additional two levels of services, 
mold the architecture towards a specific domain or application, as additional services can be introduced 
and integrated into the hierarchy as they are sitting on top of the cores which are ensuring the integrity 
of the basic properties. The core services would be: configuration, TTNoC communication, execution 
control, global time, and diagnostics. The optional services are services that provide system level func-
tions, but they are not necessary for the operation of the MPSoC (i.e., operating system, security, IO 
communication, monitoring, etc.) Application specific services allow the end user to integrate application 
specific functions into the system. Examples would be: a video service or human interaction interface 
(HMI) service. A service management layer is missing from the original design. Full service oriented 
architectures provide a service management services such that users can subscribe or unsubscribe from 
a specific service. In this case a static configuration of services is necessary. The whole architecture is 
based on the concept of static configuration at this instance. A dynamic configuration or reconfiguration 
is extremely difficult to certify for safety applications. One of the goals of this architecture in addition to 
the feasibility study for mixed criticality integration was evaluation of certifiability of such architecture 
for safety critical applications.

3. A HETEROGENOUS TIME-TRIGGERED ARCHITECTURE 
ON A HYBRID SOC PLATFORM

The ACROSS MPSoC provided a concrete solution for the problem of mixed-integration. Some of the 
ideas were not explored, although they seemed fully reachable. The platform offers the ability to increase 
or decrease the number of components as the TTNoC infrastructure is fully flexible it was able to con-
nect up to 250 components in the current implementation. The TTNoC allows use of heterogeneous 
components, however, this hasn’t been applied due to limitations of the underlying platform. Also, the 
ability to scale up and implement higher powered components. The hybrid SoC architectures allow more 
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space for these experiments. In the following section a heterogeneous time-triggered architecture imple-
mented on hybrid SoC (HTTSoC) is described (Isakovic & Grosu, 2016). It is based on the ACROSS 
architecture with an extension to accommodate a hard-coded ARM processor component. This approach 
also slightly deviates from the original static service-oriented approach, and explores the possibility of 
modular architecture with generic component templates. The architecture is organized in three parts: the 
TTNoC, a cluster soft-core components, and a single hard-coded component. The tunic has the same 
core from the ACROSS MPSoC, with a different topology and an additional TISS interface to connect 
the hard-coded component. A component is a fully functional computing device similar to a microcon-
troller, it is a system within a system, and they were marked as µComponent. The fundamental elements 
of the communication infrastructure the TTNoC, TISS and a component called trusted resource manager 
(TRM) are essential for the structure and organization of the architecture.

The implementation uses Altera Arria V SoC as an underlying platform. Figure 5 depicts a block 
diagram of Arria V SoC. It contains an ARM Cortex A9 dual-core processor described as a hard proces-

Figure 5. A block diagram of Arria V SoC
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sor system (HPS) and an Arria V FPGA device. Each processor core runs with a frequency of up to 1 
GHz, 32 KB L1 cache memory, and 512 KB of L2 cache memory. In addition, the SoC is equipped with 
three blocks of 1 GB DDR3 memory and a number of other peripheral memories and IO interfaces that 
can be used by both devices. The SoC uses AMBA Network Interconnect (NIC-301), marked as an L3 
Interconnect, as an on-chip communication backbone between FPGA and HPS.

A core of the communication infrastructure is the TTNoC, a mesh of an arbitrary number of mul-
tidirectional switches, called fragment switches interconnected in a specific topology. A fragment 
switch is a module with four bi-directional channels that relay data either to another fragment switch 
or to a µComponent interface. Topology of the TTNOC can vary, it is not necessary that each channel 
is occupied, but the most effective layout is of course a mesh where each channel is closed. It increases 
routing capabilities and increases maximum throughput and efficiency of the network. The size of the 
network is bounded by clock distribution limitations of an underlying platform. Essentially, there are 
two types of data transmitted over TTNoC, time-triggered messages and signals for event-triggering 
and maintenance of global time.

A next essential element in the communication infrastructure of the architecture is a trusted interface 
subsystem (TISS). It is trusted interface between TTNoC and components. It is an information gateway 
where time-triggered message is sent and received transparently according to a predetermined sched-
ule. It has a private memory for storing data and configuration. This is why it serves at the same time 
it represents a safeguard for the resilience of the network. A TISS is interfaced with the µComponent 
from one side and with a fragment switch from another. The µComponent interface contains a dual-
ported memory for message communication, which is considered to be a part of the µComponent, a set 
of interrupt signals for event triggering and set of status and synchronization registers.

A trusted-resource manager (TRM) is a network management which is implemented on one of the 
components connected to the network. It serves as a configuration manager for all TISSs, delivering 
configuration information for communication schedule and global time. It is the only component allowed 
to configure TISS located communication schedules and global time base references. It is the only com-
ponent fully ported from the ACROSS architecture, where the other components are implemented in a 
generic fashion to explore a modular approach for the design and organization of the MPSoC. The TRM 
is equipped with a global time generator which is used as the reference tick generator for global time base.

These three subsystems ensure basic functionality of the TTNoC, they are further interfaced with 
µComponents. In ACROSS MPSoC the µComponents were designed to conform the service-oriented 
approach, each component was equipped with a set of functionalities to provide a specific service or set 
of services. The architecture presented in (Isakovic & Grosu, 2016) describes only two types of compo-
nents HPS Component and a standard soft-core µComponent. The µComponents are implemented using 
a generic template which can be adapted during the design to specific services. The idea is to create a 
stable base which or sandbox architecture which can be extended by an end user with a set of premade 
or custom designed apps. The concept includes integration of design tools such that a custom high-level 
design would be molded on the TTNoC based SoC.

The second type of component is an HPS component. It uses part of the HPS of the hybrid SoC with 
a single ARM core and DDR3 SDRAM. The HPS component is interfaced with a corresponding TISS 
and required memory interfaces located in FPGA. The component itself is also hybrid as the part of the 
component lies on the HPS and the other part is implemented on the FPGA. The platform allows direct 
coupling of the hardware components implemented in FPGA with the HPS over L3 interconnect bus 
bridges. To establish a full functional connection the interface between HPS and TISS requires two L3 
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Figure 7. Service hierarchy in ACROSS MPSoC

Figure 6. ACROSS MPSoC architecture
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bus bridges. Two interfaces used in the in this case are light HPS-to-FPGA, and FPGA-to-HPS bridge 
(see Figure 9). One bridge is used for interfacing dual-ported memory and the other for the routing of 
interrupt signals. In the initial setup, only one ARM core was used, however, both cores could access 
the interface if needed. The component is distributed on two devices within a single chip, but it is repre-
sented as a single component in design tools. The HPS component still uses default memory hierarchy 
what makes it less applicable in safety-critical cases. However, it is a perfect solution for the applications 
without safety constraints that require higher performance capabilities. The dual-core processor can be 

Figure 9. HPS micro-component
Isakovic & Grosu, 2016.

Figure 8. Heterogeneous time-triggered architecture on a hybrid SoC platform
Isakovic & Grosu, 2016.



187

A Mixed-Criticality Integration in Cyber-Physical Systems
 

run in a symmetric multiprocessing mode or in an asymmetric multiprocessing mode. This provides 
additional width in the design of applications where on core can be used as a work core and the other 
as a diagnostic or monitoring unit. The HPS component confirms the ability of TTNoC to integrate 
heterogeneous components. This means that FPGA can host use case specific accelerators which can be 
integrated in the architecture instead or alongside Nios 2 components. This way application can utilize 
modular approach to build a application specific architecture from a generic set of building blocks.

The presented architecture represents a corner stone for the idea of a modular hardware architecture 
which can be molded on a specific application using a set of high level tools. This way utilization of 
system resources, power consumption, performance is optimized during the design phase. The required 
set of tools for this objective is not included in the original platform set of tools. The lack of tool inte-
gration presents a major challenge and requires significant amount of efforts to fit the given application 
on the platform. The goal is to create a configuration tool which maps application requirements on to 
hardware architecture. This would increase usability and scalability of the presented architecture. The 
tools would cover hardware requirements, system software requirements and system properties (e.g., 
safety or security). The original architecture was created with a set of basic tools for configuration of 
the architecture. To explore full potential of the platform a more powerful set of tools is required which 
can bridge the manual tasks in the design process, from hardware to an application.

In the case of ACROSS MPSoC each component is considered fault containment unit and the MP-
SoC as a whole an error containment unit. The global time and synchronization mechanism of TTNoC 
provide an excellent foundation for component replication. The heterogeneous approach adds another 
layer of fault and error containment. Although the HPS system is integrated into the TTNoC architecture, 
it is still a fully independent unit, and the faults in FPGA cannot resonate to the HPS and vice versa. 
However, the system provides a set of interfaces that enable bidirectional reprogram or reconfiguration. 
Both devices can be used to monitor and replicate the functionality of the other. The component and the 
chip represent two levels of fault tolerance in the solution with only FPGA device. In case of hybrid SoC 
platform there is an additional level between two devices. The above-mentioned tools would be able to 
integrate a fined grained fault tolerance mechanisms based on this basis.

Tested architecture implementation has four µComponents with a rudimentary design, and a HPS 
component. A huge factor in the selection hardware platform during application design process is the 
cost. One of the goals is to explore usability of the presented architecture on a larger scale. The absence 
of tools that bridge the gaps between hardware design, architecture configuration and application de-
sign was mentioned as one of the major challenges. However, it is not the only one in this case as the 
presented hybrid SoC is still relatively expensive. The modular approach examines the minimal set of 
components necessary for this architecture to operate. The current design uses about 12% of the FPGA 
logic elements, 22% of block memory bits and 12% of pins. This platform is capable of hosting a much 
larger architecture. Also, the modular approach allows us to implement this platform even on the low 
scale platform, making it more accessible. This also means that the architecture can be scaled down 
on for low power and low cost applications (e.g., industrial IoT). Deterministic computing in IoT is a 
major challenge and the time-triggered nature of the presented architecture provides a perfect basis for 
integration with time-sensitive networks (TSN).

The modular approach in a design process of HTTSoC is a way to explore the optimal design process 
in CPS where an application can be modeled from the physical environment and computer hardware, 
system software and application software. The goal of mixed-critical integration is optimal performance, 
energy consumption and functionality. The FPGA was created with the purpose of having customized 
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hardware for specific applications, however design process is more challenging than the process of 
writing software for a generic off-the-shelf computer architecture. The described architecture aspires 
towards this objective of hardware that can be programmed using established programming techniques 
and still be able to optimize performance and other system properties according to the requirements of 
a specific application.

The tool integration is still behind this objective and interoperability needs to be improved in order 
to allow the integration seamless hardware, software and user tasks and functions.

4. DISCUSSION

This article reflects on the problem of mixed-criticality integration in the CPS, the challenges that are met 
upon the development of each part of a CPS. From the historical overview of the computer systems and 
cyber-physical systems in Section 1.2 can be concluded that the integration question dominated throughout 
all stages of development. Integration is the act or process or an instance of integrating as incorporation 
as equals into society or an organization of individuals of different groups (as races) (Merriam-Webster, 
2016). In the scope of CPS the integration depending on the segment where it is applied e.g., integra-
tion between physical system and computer system, integration between hardware and software, or 
integration between different tasks of an application, an integration of all these segments together. The 
mixed-criticality integration refers to the incorporation of functional units with different priority levels 
in relation to a specific system property (e.g., safety, security, real-time). A safety critical system must 
ensure that all parts of the system are safety proficient, what can be a major overcompensation and ex-
tremely inefficient (El Salloum, et. al., 2013). The consumer electronics value user experience as a top 
priority and this is why the focus is strongly oriented on performance and usability. An average personal 
computer really reaches the maximum of its abilities; however, it is evaluated on these extremes. The 
idea of mixed-critical integration also involves partial validation or certification of the system, meaning 
that only individual components need to be verified for a specific property and their level of criticality.

The performance is a challenge that arises from the current switch in processor technology, in par-
ticular single-core processors era is ending and manufacturers are slowly abandoning the production of 
single-core processors in favor of multi-core CPUs. However, multi-core processors provide insufficient 
support for safety critical or mixed-critical applications. A TTNoC architecture implemented on a hybrid 
SoC platform combines hard-coded CPU with a cluster of µComponents based on soft-core CPUs located 
on an FPGA device in a deterministic fashion without major loss in performance. Moreover, it creates 
more space for optimization as better utilization of resources. New generations of FPGA devices provide 
are able to implement extremely fast custom hardware solutions, but also soft-coded micro-controllers 
more than capable of sustaining state-of-the-art applications. If considered that the processor frequency 
of embedded architectures which are mostly a subset of cyber-physical systems are averaging around 
500 MHz (UBM tech., 2013), it is evident that current hybrid SoC are capable of providing the same 
service. The next generation of hybrid devices are increasing their performance between 50%-100% 
(Altera, 2016), it can be concluded that the future platforms would be more than capable of leading 
mixed-criticality migration.

A system optimization considers multiple measures to create more efficient and stable system. In the 
concept of the HTTSoC optimization is considered in multiple steps:
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• Considering a modular approach as a way to offer sandbox architecture which can be molded on a 
specific application starting from hardware.

• An integration of design tools, such that mixed-criticality is supported by default and designs 
optimized transparently.

• Each component can be adapted or replaced with a more effective hardware solution. As the 
TTNoC generic interfaces can be easily coupled with heterogeneous components.

Having a fully deterministic hardware architecture is currently unreachable, but their numbers of 
ways to ensure that applications perform deterministically. The communication infrastructure can be 
deterministic and the TTNoC used in HTTSoC is an excellent example. This means that each informa-
tion that enters the interface of TTNoC is transmitted in a deterministic fashion, even if the component 
behind is not. The absence of information is also an information in deterministic networks and can be 
used to detect faults. As am overcompensation is the main method to achieve determinism on a CPU 
level, having number of smaller but independent units can achieve the same and even better effect.

The classification of systems is a problem beyond hardware and must be addressed on a larger scale. 
It is a crucial part of an overall system optimization and a seamless tool interoperability. Having a 
distributed network of computers with low latency communication on a single platform enables easier 
segregation of applications according their corresponding sets of functional properties. It is a process 
that starts with collecting requirements and stretches throughout the design process of each system.

Having an accurate image of a system, a model, is pivotal in the design process of CPS. There are 
examples like the architecture described in (Schuster, Meyer, Buchty, Fossati, & Berekovic, 2014) where a 
hardware architecture can be modeled in a virtual environment and almost fully evaluated. Such architec-
ture is portable to FPGA design and can be implemented on hybrid SoC platforms. Although, it was not 
explored the idea of creating a virtual model of HTTSoC has been considered as a part of the tool chain. 
It would serve as a prototyping platform, the task that was exclusively reserved for early FPGA devices.

The HTTSoC architecture, together with ACROSS MPSoC, fully support the concept of mixed-criticality 
integration and explores other properties which would improve the design and implementation process 
of CPS in general. It strongly enforces spatial and temporal isolation which represent a cornerstone for 
mixed-criticality integration and safety applications.

4.1 Use Case Analysis

The following section provides a short analysis of applications where architecture i.e., HTTSoC might 
be an advantage. The analysis is concentrating on automotive domain as a one of the largest groups of 
CPSs. The automotive industry is an industrial with the highest number of manufactured units annually, 
approximately 90 million units in 2015 (OICA, 2015). The number of ECUs in a car averages between 
50 and 100 ECUs depending on the size and a class of the car (Johnson, Gannamaraju, & Fischmeister, 
2015). The trends show that a number of functions in a car increases with every generation. The appli-
cations like ADAS, car-2-car communication or car-2-OEM communication are becoming a part of the 
standard car package. The complexity of these new function requires a significant increase in computing 
power and increase in a number of ECUs. Without merging functionalities, the costs in energy, weight, and 
fuel economics would surpass benefits. The architectures like HTTSoC and ACROSS MPSoC provide a 
solution for integrating multiple function new functions and optimize existing functions in a vehicle. The 
approach not only provides a platform for integration of mixed-critical integration and implementation of 
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safety-critical application, but also offers a way to reduce power consumption and weight of a car. This 
could significantly improve fuel economy in a car. A number of communication channels and cables in 
a car puts significant overhead on the energy consumption and weight. Use of HTTSoC or ACROSS 
MPSoC enables virtualization of communication channels, like CAN lines that reduces the number of 
physical devices in the car (Wasicek, Höftberger, Elshuber, Isakovic, & Fleck, 2014).

Another major challenge in a car industry is security, the performance of a car and other safety related 
aspects are tightly connected with other non-essential systems in a vehicle. Also, it is crucial that only 
verified replacement parts can be installed in a car. Use of TTNoC reduces number of physical connec-
tions of the system, this a significant feature as even non-essential channels can be source of security 
vulnerabilities. Security as a property is supported by design in HTTSoC and ACROSS and with few 
additional features can be transformed in a secure platform, fully transparent to the end user (Isakovic 
& Wasicek, 2013).

5. FUTURE DIRECTIONS

As stated earlier in the text implementation of hardware without support of software and design tools 
leaves more space for design faults. Full tool interoperability that captures a design process of a CPS from 
a requirement phase to deployment is a future objective. The tool chain for the development of hardware 
and software in the described architectures is a rather complex structure. This could be simplified with 
a couple of bridges in the configuration scheme.

Another goal is to fully use heterogeneous design capabilities and integrate other types of cores, a 
typical example is Leon 3 SPARC processor from Geisler (Geisler, 2016). It has a fault-tolerant con-
figuration and it is highly utilized in the space domain. Integrating this process would open the door for 
the architecture in space related applications.

To increase the spectrum of applications the architecture needs to be expanded on different hybrid 
SoC platforms, e.g., Xilinx Zynq. It is a more common platform, with the capability of high level syn-
thesis, which can be used to integrate the design process better and to implement software functions as 
TTNoC components.

The next generation of hybrid SoCs provides ability to perform a partial dynamic reconfiguration 
of FPGA fabric. This can be used as a tool to increase resilience of a system, or to enhance the system 
during runtime. The goal is to explore these capabilities within the presented architecture and provide 
tool integration for the application development process.

6. CONCLUSION

The number of functions in modern CPS (e.g., motor vehicles) is increasing with each new generation 
and the way to accommodate the necessary increase in computing power is to merge multiple applications 
on a single power and reduce the physical footprint of computer hardware in a system. To accomplish 
this objective a number of obstacles need to be overcome. The performance of the hardware architecture 
needs to match the requirements of the increasing number of applications and the complexity of appli-
cations. The hardware ensures deterministic behavior in order to ensure spatial and temporal isolations 
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of individual applications. The shift from single-core to multi-core architectures created a vacuum in 
for safety critical systems, as COTS multi-core architectures provide insufficient guarantees for safety 
critical applications. The safety regulations impose the rule that a system must ensure the safety integrity 
level of the application with highest safety integrity level. For multi-core architectures with symmetric 
multiprocessing this increases problem of mixed-criticality integration even further. The qualification 
and classification of applications according to their functional requirements is necessary to avoid over-
compensations during design and implementation process.

The HTTSoC and ACROSS MPSoC provide a viable solution for mixed-criticality integration and a 
number of ways to face the above stated challenges head on. The introduction of hybrid SoC platforms 
provided a sandbox environment for the design of hardware architectures that match COTS hardware 
in terms of performance and outran them in terms of efficiency. It solves some fundamental problems, 
however there are still more detailed challenges, like tool integration and modular design process that 
would ensure the full sandbox experience for users and still preserve fundamental properties necessary 
for mixed-critical and safety-critical applications.
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KEY TERMS AND DEFINITIONS

ASIC: Application specific integrated circuit.
ECU: Electronic Control Unit.
HTTSoC: Heterogeneous Time-Triggered SoC.
Mixed-Criticality: A system with multiple tasks of different property requirements.
MPSoC: Multiple processor System-on-a-chip.
SoC: System-on-a-chip.
TRM: Trusted Resource Manager.
TTNoC: Time-triggered network-on-a-chip.
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Abstract. The CPS/IoT Ecosystem project aims to build an IoT in-
frastructure that will be used as a platform for research and education
in multiple disciplines related to CPS and IoT. The main objective is to
provide a real-world infrastructure, and allow students and researchers
explore its capabilities on actual use cases.
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1 Introduction

We are experiencing a major paradigm shift in terms of computing systems. The
ability to collect big data, use it to model physical environments with astonishing
precision and use it to improve existing systems is a principal factor behind the
upcoming revolution.We are using Cyber-Physical Systems(CPS) to observe and
manipulate our physical environment,and the Internet-of-Things (IoT) to trans-
fer and transform this raw data into profitable information.CPS/IoT Ecosystem
is a project that materializes this idea. It embodies an infrastructure for IoT in-
tegrated together with a set of use cases that represent CPS. It is a joint project
of three research institutions Technische Universitẗ Wien (TU Wien), Austrian
Institute of Technology (AIT), and Institute for Science and Technology (IST).
It serves as a research platform for a variety of related disciplines and as an
educational tool for bringing concepts of IoT and CPS closer to the students in
a ”hands-on” type of an approach.

The preliminary forecasts state that IoT it will continue to grow rapidly in
the next ten years. Multiple studies predict a number of new IoT devices to reach
75-100 billion until 2025 [20]. The global network of IoT devices will include both
public and private IoT domains, with the ability to share and monetize not only
results but also the usage of the infrastructure itself [8] [15]. We will highlight
just few important challenges:

Development. Each scope of operation ion CPS and IoT (e.g., cloud,
fog/edge, sensor, network) is traditionally observed as a separate discipline.The
development methods and tools for each scope have been created accordingly
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and they are not necessarily mutually compatible. To build an IoT applica-
tion the tools for development, testing, and deployment need to be fully
inter-operable.
Management. The holistic idea of IoT is to have billions of heterogeneous
devices serving millions of different applications connected to Internet. Run-
ning these systems requires configuration, deployment, software updates and
maintenance etc. Managing these tasks on a system this magnitude is a ma-
jor challenge and requires enormous amount of effort.
Security. In the world where ”every single thing” is connected to the Inter-
net, security represents crucial requirement. Standardized approach to secu-
rity and related topics, i.e., privacy and trust must be is a major challenge
in IoT. Example from data breaches and recent changes in EU regulation re-
garding handling private data [26] highlights just how important is security
in IoT. In the future data will influence policies and indirectly lives of people.
Making sure that the data is valid and secure is extremely important.
Power Consumption. Over 75 billion new devices in just under ten years
will create a massive overhead on the existing power infrastructure. The
current production of electrical energy in the European Union on a yearly
basis is around 3000 TWh [6].An average IoT device like the Raspberry Pi 3
consumes up to 5 Wh of electrical energy.If we pessimistically project it onto
new IoT devices we get 3240 TWh on a yearly basis just for these devices.

The project will focus on implementing hardware structure of devices with
custom build cloud system, fog/edge nodes, and COTS and custom built sensor
and actuator devices that will form an infrastructure. It explores development
frameworks, tools and mechanisms that will ensure standardized design and help
establish functional system between hardware, software, and applications. A ma-
jor aspect of the project is its educational value in terms of bringing state-of-
the-art technology directly into curriculum. A new IoT infrastructure providing
means for realistic implementations and applications, it enables students to ex-
perience complexity, real-time, security and dependability issues on real-world
examples. Beside using the infrastructure in courses, the infrastructure will be-
come central topic for numerous bachelor and master theses.

In this chapter we introduced the motivation behind the project and its
core concepts. In Chapter 2 we provide short overview of the related projects.
Chapter 3 describes methodology for the project execution and its most essential
components. Two use cases implemented in the project are described in Chapter
4. The final chapter concludes the paper and provides future directions for the
project.

2 Related Work

IoT represents a super set of multiple disciplines i.e., machine learning, artifi-
cial intelligence, real-time systems, embedded systems, high performance com-
puting, web and mobile technologies, networking , enterprise organization, civil
engineering and a number of others. Vermessan et. al. define IoT as ”a concept
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and a paradigm that considers pervasive presence in the environment of a va-
riety of things/objects that through wireless and wired connections and unique
addressing schemes are able to interact with each other and cooperate with other
things/objects to create new applications/services and reach common goals” [28].
In this section we will give a short overview of the relevant research topics with
respect to the CPS/IoT Ecosystem project and related research projects within
the scope of EU research community.

The heterogeneity of IoT is one of its most prominent features however on the
development and run-time level it is often primary source of interoperability
issues. This is why the interoperability is one of the most researched topics
in IoT. A significant number of projects in are working to enable or increase
interoperability between existing and new IoT platforms and devices [5, 14, 18].

Second major topic in the scope of IoT research and development is security.
It is arguably the most difficult challenge in IoT. It is a rather complex topic,
as it branches in a numerous subtopics, each pf which is highly complex and
demanding on its own. Thus a large variety of projects and research initiatives
on the variations of security and security related topics (e.g., encryption, trust,
privacy, block chain, user, data and ip protection) [4, 19, 13, 23].

The IoT represents a large heterogeneous system with a enormous variety of
applications. Providing generic rules and guidelines allows us to create systems
with standardized system properties. However, systems also need to be tailored
to each individual application and its requirements. According to Gabriel in
[12] ”a system that can be customized, specialized, or extended to provide more
specific, more appropriate, or slightly different capabilities” is called framework.
A framework allows us to use it for different purposes without having a need to
write the code each time from the beginning. Multiple research initiatives are
exploring different frameworks for IoT, with different specialization abilities (e.g.,
security, safety, service-oriented design, social aspect, education and others)[10,
19, 7, 23, 22, 25].

Providing generic rules and guidelines allows us to create systems with stan-
dardized system properties. However, systems need to be tailored to specific
application requirements. According to Gabriel in [12] ”a system that can be
customized, specialized, or extended to provide more specific, more appropriate,
or slightly different capabilities” is called framework. It allows us to use it for
different purposes without having a need to write the code each time from the
beginning. Building such systems is one of the most explored questions in IoT.
Multiple research initiatives are exploring different IoT frameworks with differ-
ent specialization abilities (e.g., security, safety, service-oriented design, social
aspect, education and others)[10, 19, 7, 23, 22, 25].

The applications are strongest driver behind IoT revolution. IoT applications
are normally spearheaded by commercial subjects and the number of different
ways IoT is improving existing systems changes every day. The research as-
pects with respect to IoT applications focuses on model and framework design,
big data, social and economical implications, security and privacy issues, and
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cooperation with other fields of science (e.g., biology, medicine, mechanical en-
gineering, geo-engineering, etc.) [2, 9, 18, 1].

3 CPS/IoT Ecosystem Methodology

CPS/IoT Ecosystem is conceived as a heterogeneous structure of hardware de-
vices, and corresponding software components distributed over tree intertwined
scopes of operation: cloud, fog/edge, and sensor/actuator nodes. The cloud pro-
vides high performance computation and large capacity storage. The fog, also
referred as edge, level indicates a network of devices with real-time communi-
cation capabilities, and mid-range computational and storage capabilities. The
sensor/actuator level serves as a direct interface with physical environment. They
posses capabilities of collecting and transforming physical signals using sensors
and manipulating the environment via diverse actuators. The CPS/IoT Ecosys-
tem infrastructure is a geographically distributed system. Parts of the infras-
tructure will be located on multiple sites on a wider area of Vienna,Austria.

CPS/IoT Ecosystem Cloud The cloud system is a general purpose high-performance
computing platform located at a server center of TU Wien. It provides services
that facilitate handling of big data (e.g., storage, analysis, aggregation). It is an
essential part of the infrastructure. In CPS/IoT Ecosystem we are implementing
a custom built cloud server. Its purpose is to serve the applications, but also to
be used as a research subject. It will be deployed in two parts: a) a general pur-
pose computing platform, and b) specialized computing platform for calculation
intensive tasks.

CPS/IoT Ecosystem Fog/Edge Ability to react fast and ensure quality of service
(QoS) on a factory floor level or similar plane of execution is implemented in the
fog/edge level. It represents a network of computing nodes which are both capa-
ble of handling certain significant of data and still ensure service dependability.
The fog/edge devices can be in direct connection to the sensor/actuator nodes
or as an intermediate gateways for the ultra low energy/performance devices.

CPS/IoT Ecosystem Sensor Device The sensor/actuator nodes are direct inter-
faces with a physical environment. These devices are limited in computational
performance, size and power consumption. They can be deployed individually
or in swarms as explained in Section 4.

CPS/IoT Ecosystem Information Model As mentioned above management, de-
velopment, and security are three major challenges in IoT. Part of the solution
for these challenges is a functional IoT information model for the CPS/IoT in-
frastructure. It will allows us to describe the system from multiple perspectives:
hardware platform, services, application, management and communication. The
acquired models can be used as templates for application design, code genera-
tion, development and operations (DevOps), testing and validation.
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COTS vs. Custom Built Hardware CPS/IoT Ecosystems generally comprises a
substantial amount of sensor nodes.Buying a lot of sensor hardware can quickly
consume an important amount of a project’s budget, since commercially available
ready to use hardware is usually expensive. Therefore designing and building
custom hardware can be an attractive alternative. Designing custom hardware
also has the advantage of increased flexibility, since one is not limited by the
choice of existing components. The hardware design can be tailored to specific
requirements as described in 4.

Technology in CPS/IoT Ecosystem The objective of the CPS/IoT Ecosystem
project is to build a technology agnostic IoT infrastructure. Often the IoT is
connected to a single framework, communication protocol or cloud environment.
This project will provide general purpose cloud environment based on Open-
Stack[24]. It uses variety of open source and research community frameworks to
build middle-ware and application software [17, 10, 27, 11]. In CPS/IoT Ecosys-
tem we are not limited to a single communication protocol, typical IoT commu-
nication standards described in [3, 16, 21] will provide a basis for networking and
communication standards.

4 Use Cases

4.1 Smart Parking

Smart Parking application provides status information of public or private park-
ing places in a city or garage. Each parking spot is equipped with a sensor or
group of sensors capable of detecting objects (cars or similar) on a surface of the
parking spot. Data of each sensor is then transmitted to a central application
software located on a remote server via Internet connection. The information
is further delivered to end user over Web or mobile application. The Smart
Parking application is build on the principle of CPS/IoT Ecosystem. The cloud
environment serves as mass storage device and a service provider to external
users. It collects all parking information from the fog all fog nodes and provides
them to external applications (e.g., web site). The edge/fog nodes serve as sen-
sor data aggregation and filtering nodes. The data collected from the sensors
is transformed in the application useful information. The parking spot is a vir-
tual concept and can be formed on arbitrary surface with a single or multiple
heterogeneous sensors. Figure 1 provides an architectural overview of the Smart
Parking application. The middleware backbone of the Smart Parking application
is a service-oriented Arrowhead IoT Framework[10]. The Smart Parking applica-
tion services are distributed over local clouds both on cloud and edge/fog level of
operation. Senor nodes are connected via Bluetooth Low Energy (BLE) protocol.
Future work on this use case considers adding multiple additional services (e.g.,
payment, allocation and reservation of spaces), also adding support for multi-
ple sensor types and building vehicle-2-infrastructure interface for autonomous
parking. Another feature is the implementation of sensor node simulator which is
able to project sensors on the scale of the city and provide simulated data to the
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Fig. 1. Smart Parking Architecture Overview

rest of the infrastructure. This allows us to test scaleability and manageability
of the application without deploying hardware devices.

4.2 Smart Vineyards

IoT can help to overcome arising problems in the agricultural sector. For exam-
ple, the increasing labor shortage do to the depopulation of rural areas. This is
possible because such infrastructures help farmers to work more efficiently. Ex-
amples are disease prediction systems, that warm farmers of arising diseases in
certain areas. Farmers can use this information to bring out pesticides only when
it is necessary and also only where it is necessary. This reduces the workload of
farmers, the costs for pesticides and the negative impact on the environment.

We are building such an infrastructure for vineyards in cooperation with the
Vienna University of Natural Resources and Life Sciences (BOKU Wien) as part
of the CPS/IoT Ecosystem project. The aim is to bring out several hundreds
of swarm nodes that measure the environment. This information is transmit-
ted to the cloud via fog nodes. Later, the information is processed by means
of big-data analysis and machine-learning algorithms to learn correlations be-
tween diseases and environmental influences to create new and improve existing
diseases prediction models.



CPS/IoT Ecosystem: A platform for research and education 7

5 Conclusion

The paper provides a short overview of the CPS/IoT Ecosystem project and its
main objectives. IoT has a complex and broad spectrum of topics and CPS/IoT
Ecosystem is providing a platform where these topics can be explored and also
bring closer to the students. Our goals are to build a physical infrastructure,
to ensure data flow and application integration, demonstrate multiple use cases,
and open it to other research initiatives for collaboration. The project is in its
first stage and will continue to develop, thus our focus in the future will change
on research of methods how to improve management, development, security and
other properties.
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Abstract—This paper introduces RVAF, a runtime verifica-
tion (RV) extension of the Arrowhead Framework (AF) with
container-based service-deployment and runtime-enforcement of
a desired quality of service (QoS). AF is a service-oriented
middleware architecture for IoT-applications, consisting of a set
of core and auxiliary services and systems, respectively. The
QoS manager (QoSM) is one AF’s most important auxiliary
systems, which can be used to guarantee the application’s QoS
for a wide set of parameters. In RVAF the QoS offered to a
particular IoT-application is specified in signal temporal logic,
and is continuously monitored by the RVAF-QoSM. In case of
an imminent violation, RVAF automatically initiates a container-
based reconfiguration, which is ensured to maintain the desired
QoS. RVAF is beneficial to large IoT-applications, where the use
of continuous-integration and continuous-deployment tools, is not
only a recommended practice but also a necessity. Moreover,
the use of RVAF is advantageous both during the development
of an IoT application, and after its deployment. We describe
the architecture of RVAF, provide its formal underpinning, and
demonstrate the usefulness of RVAF supported by an industrial
IoT application. The main contribution of this work is to show
what it takes to incorporate RV concepts into modern SOA
frameworks supporting the development of IoT applications.

I. INTRODUCTION

Industrial digital systems (IdS) were originally designed
with a mission-oriented focus in mind. As a consequence, IdS
were homogeneous pieces of software, most often unable to
adapt to the changes occurring during their evolution, such
as the IdS’ subsequent integration with management, analysis,
or financial systems, respectively. In order to alleviate these
problems, the design of IdS is now increasingly adopting
the IoT paradigm, which is one of the major pillars of
the industrial-digitization initiative to optimizing production
chains [1].

The arrowhead framework (AF) is a middle-ware enabling
the service-oriented approach (SOA) to the development of
IoT applications [2]. SOA facilitates the construction of
generic services, that are later on integrated in various ap-
plications, as application-specific services. SOA thus greatly
enhances the reuse of services, and their integration into fine-
grained functionalities.

AF includes a set of core services, such as service discov-
ery, orchestration, and authentication, which in turn support
the interaction between application services, such as sensor-
reading or data-storage services [2]. Each service is a part of
a system-of-systems (SoS) and acts as a completely separate
software entity. As such, services are developed, operated, and
maintained by different groups, organizations, or individuals.

Ensuring a seamless integration between development and
maintenance on the one side, and the quality of service (QoS)
during operation on the other side, are overlapping tasks.

This paper introduces RVAF, a continuous integration and
deployment, RV-extension of AF. RVAF supports the con-
tinuous service integration/deployment in a container-based
fashion, and the runtime enforcement of a desired quality of
service (QoS) through adaptation. In RVAF the QoS guar-
anteed to a particular IoT-application is specified in signal
temporal logic (STL), and continuously monitored by the
QoS manager (QoSM). As shown in Figure 4, in case of an
imminent violation, RVAF automatically initiates a container-
based reconfiguration, which is ensured to maintain the desired
QoS. RVAF is beneficial to large IoT-applications, where
the use of continuous-integration and continuous-deployment
tools, is not only a recommended practice but also a necessity.
Moreover, RVAF use is not only beneficial after the deploy-
ment of an IoT application, but also during its development. In
addition to describing the architecture of RVAF and providing
its formal underpinning, we give proof of concept of the
usefulness of RVAF based on a real-life, industrial scenario.

The rest of the paper is organized as follows. In Section II
we introduce AF, followed by related work in QoS on Ar-
rowhead. In Section IV we discuss RVAF architecture and
in Section V its formalization. In Section VI we present our
experimental results on a conveyor-belt scenario. Finally in
Section VIII we draw our conclusions and discuss future work.

II. AF: ARROWHEAD FRAMEWORK

AF is the result of a set of EU projects in which SOA princi-
ples have been applied to IoT and Industrial IoT applications,
respectively. As the main result of the Arrowhead projects,
the AF continued its development in an independent fashion,
and it is now being used in multiple industrial installations.
It is further developed in other projects, like for example, the
Arrowhead Tools project.

AF has what is needed to design, implement and deploy an
Arrowhead SOA-compliant system. The objective is to allow
all users to work in a common and unified framework, thus
enabling a high level of interoperability. The AF includes three
core services and systems [2], where the Orchestrator plays a
key role in defining which application services are connected
with each other, and the QoSM guaranteeing adequate levels
of QoS for each connection.



Fig. 1. RVAF-supported and IoT-based full-stack system architecture

Fig. 2. QoS Manager Architecture

The AF builds upon the local-cloud (LC) concept, where lo-
cal automation tasks are encapsulated and protected from out-
side interference. Application services usually communicate
with services within the LC (intra-cloud orchestration), except
when they communicate through the Gatekeeper Service with
other AF-compliant LCs (inter-cloud orchestration). Each LC
must contain, at least, the three mandatory core systems:
Registry, Authorization, and Orchestration. They allow to
establish connections between AF-application services. The
core systems are accompanied by optional supporting systems,
that further enhance the capabilities of an LC. The Event
Handler is one of these systems, capable of implementing a
producer/consumer communication pattern on an SOA logic.

III. RELATED WORK

As shown in Figure 2, the QoS Manager (QoSM) in Arrow-
head interacts with the Orchestrator and the QoS-Monitor, to
ensure that connections between application-service instances,

respect given QoS requirements. The QoSM handles infor-
mation regarding the network topology, device capabilities,
QoS requirements, etc, residing in the QoS Store (and other
databases of the AF), accessible through an SOA interface.
The management of the QoS is mainly concerned with the
reservation of communication and computational resources.
Their relevant information is maintained in a QoS Store. The
QoSM is able to determine if the requested QoS can be granted
or not, and configure the involved devices and active network
elements (e.g., router and switches), to grant a QoS request.

The elements that can be configured by the QoSM include
traffic-smoothing filters (on the output of service producers
or consumers), traffic parameters (like traffic priority), and
delivery guarantees of message-oriented middle-ware with
QoS capabilities (like DDS [3], RabbitMQ [4] or XMPP [5]).

The Alg module contains different algorithms for QoS
verification (examples will be given Section V, as Algorithms
1 and 2, respectively). The configuration of network actives
and nodes is done by the QoS Drv module. This provides the
drivers for interacting with custom or proprietary protocols.
Some applications might need to know the current status of
the system, in order to be able to adapt to changing conditions.
This is achieved by monitoring the network status with the
QoS Monitor, and informing the interested parties (e.g., ap-
plication services in charge of ensuring the robustness of the
system) through the Event Handler. A detailed description of
the QoS support in AF can be found in [6].

IV. RVAF: SYSTEM ARCHITECTURE

An IoT architecture can be split in three distinct scopes
of operation (see Figure 1): the cloud, the fog (edge), and the
swarm (sensors/actuators) [7]. Moreover, sensors and actuators
provide us with the ability to extract data from the physical
environment and to actuate upon its state. In the fog specific
tasks are performed such as data aggregation, filtering, or
real-time control. In the cloud we have ”unlimited” amount
of storage and the ability to perform large-scale computation



within conceivable time. Development of IoT systems that
spread over multiple scopes of operation is a challenging task.
It involves several levels of development such as system or
infrastructure services; user application services; and specifi-
cation, configuration and validation services. We describe an
approach on increasing QoS of IoT systems and making them
more dependable in general by using it’s own existing infras-
tructure for continuous integration and deployment (CI/CD).
RVAF system can monitor IoT services, detect faults and
errors, ensure service stability, reduce downtime and increase
overall availability.

A. CI/CD: Continuous Integration and Deployment

Automation of system development and operation is
achieved through a continuous cycle of development, in-
tegration, and deployment (CI/CD). This cycle ensures an
automated evolution from code to full applications, and an
automated maintenance and optimization, where newly built
code is automatically integrated with the rest of the system
and deployed to a target.

If the system is malfunctioning, the target code will provide
feedback to the developer, such that potential bugs and errors
in the system are corrected. CI/CD is therefore an essential
component of distributed and heterogeneous systems, such as
a full-stack IoT-based systems. Being part of the infrastructure
that supports the development and maintenance of IoT plat-
forms and applications, CI/CD contributes to a reduction of
development time and costs, and ensures a higher reliability
and robustness of a system.

Arrowhead is an open-source project [8] and it was mainly
using a centralized development method together with custom
designed manual deployment methods implemented by the end
user. In this paper we also introduce an automated continu-
ous integration and deployment system for Arrowhead core
services that can be implemented with the CI/CD system at
the application level. It provides a novel approach to integrate
user level services with core services in a fully automated
way. This ensures that not only user level services, but also,
system level services are kept updated. As shown in Figure 3,
RVAF services are deployed through the use of containers,
such as the ones provided by the Docker Swarm or Kubernetes.
Each service is installed in a single container with all its
required dependencies. Containers are pre-built and stored
in a container-image registry, the Docker Registry, which is
maintained automatically by the continuous integration system
(CI). In the example shown in Figure 3, the CI is implemented
using the Jenkins CI tool [9]. It contains a build server for
Arrowhead core services and user level services. Each service
needs authorization certificates to join an Arrowhead local
cloud, each service needs to be configured and provide end-
point information to the rest of the system. This configura-
tion process is performed using Infrastructure as Code and
deployed by Jenkins pipelines. The actions of integration and
delivery to the Docker Registry are automatically triggered by
major version commits in Arrowhead code repository.

An RVAF continuous-deployment system (CD), connects
the images of services with their respective targets (fog nodes,
cloud virtual-machines), and deploys them accordingly. The
CD is responsible for updating the containers in case a service
changes in the Docker Registry. It allows to update services
on demand, to rollback services if necessary, or to remotely
control services or clusters of services. Container orchestration
is observing container parameters such as CPU and memory
usage, however this is not reflecting a functional health state
of a service within the container. To ensure QoS on both levels
it is necessary to observe certain parameters within the service
that could affect its ability to deliver correct functionality.

B. RM: Runtime Monitoring

A further benefit of RVAF container-based deployment, is
the ability to monitor at runtime (RM) each container, in
terms of resources or application-specific parameters. RM
is performed either on a target node, or remotely. As each
container is identified with a single service, one can single
out properties of a specific service, and monitor it individually.
RM thus allows to observe the behavior of each service, and
evaluate the health of the entire system.

In the context of RVAF-supported full-stack IoT appli-
cations, we have to consider large scale multi-dimensional
data streams, with multiple sources. To fully monitor such
distributed applications, all sub-agents need to be observed
simultaneously. As an RM infrastructure we therefore chose to
integrate the Prometheus monitoring tool [10] with the QoSM.
This combination supports real-time, RM capabilities on either
a local machine, or in the cloud. RVAF uses soft real-time
monitors wrapped around PromQL [10] queries to observe
metrics from individual containers. The data collected from
a service or container is exported into time series database,
whereof it can be aggregated, filtered or monitored raw.

These features perform run-time monitoring and run-time
verification of the individual services, metrics within the ser-
vices, containers and whole clusters. It provides an additional
and novel approach to ensure QoS in industrial IoT systems.
It increases fault-tolerance, and can even be used to ensure
resilience to attacks on an IoT system.

C. SO: Self-Optimization

The IoT applications considered are heterogeneous hard-
ware and software systems. This and the fact that they are
implemented at multiple scopes of operation, makes them very
difficult to develop, manage, and operate. Thus it is important
to design these applications with basic principles of autonomic
computing, such as, self-adaptation, self-organization, self-
configuration, self-protection, self-healing, self-description,
self-matchmaking, and self-energy supply [11].

We identify self-optimization (SO) as the most relevant
property for the QoS of IoT frameworks. SO is the ability
of a system to take corrective measures, in order to maintain
the optimal usage of constrained resources [11]. The concept
of QoS management in AF, as described in [12], detects
violations and informs the other core services about the



Fig. 3. RVAF container-based service deployment

violation, it is the responsibility of these core services to take
any corrective, or containment actions.

In RVAF we extend the violation detection/notification
ability, with the ability to take corrective actions, on services,
Arrowhead clouds, or target nodes in general. This ability falls
under the notion of SO, as defined in [11]. The RVAF-SO
corrective infrastructure is realized by merging the AF-QoSM
functionality, as described in [12], with the functionality
provided by the RVAF-CI/CD and RVAF-RM described in the
previous two subsections.

V. FORMALIZING THE QOS PROBLEM

A. System model

In its current form, RVAF is mostly suited for soft real-time
IoT applications consisting of a set of interconnected services
on the same local cloud and where multiple services can be
deployed on the same node. Nevertheless, its principles can
be easily extended to other scenarios and QoS properties.

As shown in Figure 4, an RVAF model considers the system
to be composed of a set of N hosts (nodes) H1, ..., HN and
a set of M services S1, ..., SM . Services are interconnected
through links lx,y , characterising the connection between
services Sx and Sy . The services Sx and Sy can be a
typical Arrowhead SOA consumer/producer services, where
each connection between a consumer or provider can have a
set of QoS requirements. The QoS requirements are part of
the formal specification of the code, and later on saved in the
QoS Store.

Each node runs a Reconfiguration module Rx, which is
mapped to the Jenkins CI tool, (see Figure 4), where x is
the index of the node. Each module Rx can be connected
to another Reconfiguration module R. The initial operation

Fig. 4. System Model Example

occurs during service setup, where the Deployment Orches-
trator module (in Figure 2) determines in which node the
service can be deployed. This initial operation is denoted
as mS50 → H3. As depicted in Figure 4, an operation
mS5H3 → H4 represents the mobility/reconfiguration of
service S5, between nodes H3 and H4, respectively. In this
case, H3 represents the source node and H4 represents the
the destination node. Link l6,5 represents the connection that
has to be established after the mobility operation is completed
(rebinding). Consequently, connection l6,5 will have to be
safely deleted prior to l6,5 becomes operational. By safely,
we mean that no messages should be lost or delivered to
wrong nodes. This last requirement is ensured by the full
implementation of SOA principles, where each transaction is
independent from all other transactions.



B. QoS requirements formal definition
A formal definition of the QoS parameters for a service has

to capture functional as well as performance requirements,
such as the resources needed by the service to be deployed
(e.g., sensors/actuators, CPU power, memory). Therefore, ser-
vice requirements can be represented by the tuple:

SQoSx = {Ux, Dx, Cx, Critx,Mx} (1)

Ux is the required processor utilization when the service is
running. Note that Ux can be a set of values which apply to
different hardware platforms (nodes) where the service can be
executed. Dx is the service deadline which has a different
meaning if the service is a consumer or a producer. For
a consumer, this deadline is measured from the moment in
time when it is evoked, until it receives a response from the
producer service. For a producer service, this deadline is the
time that elapses from the moment the service if evoked by
the reception of a message from a consumer, until the time
it returns a response. Critx represents the criticality level
of the service, and Mx is the memory required by a service
to run. Many other QoS parameters can be defined for each
service, like the percentage of lost messages, communications
bandwidth, etc.

None of the parameters defined in Eq. 1 are mandatory.
The total absence of QoS parameters means that the service
is best effort. Also note that the values for these parameters
is obtained from the code specification. We also assume that
it is possible to know the status of each of the system node,
by consulting the QoS Store. The structure of the systems
is available by consulting the plant description (which is not
depicted in the figures). Each entry on the QoS Store in
Figure 2 should contain at least the following data for each
host Hx:

Hx : {LSx, LMx} (2)

LSx is a list of services with associated QoS requirements
(SQoSx). For each of these QoS requirements the QoSM
will record the last R measurements on the LMx list, which
enables, as an example, to calculate the average, maximum,
and minimum, and determine the tendency of the results. Each
entry i of LMx list is a measurement element Mexi related
with service Sx. These values are used in Algorithm 2 to
update the QoS requirements of the service on each node.

In this paper we focus only on (performance) QoS pa-
rameters like CPU utilization for the service, and memory
consumption. We also assume that each service Sx requires
a set of specialized resources in order to run, like access to
specific sensors. Here we assume that service deployment is
done with total independence from other services in a first
come first served basis. In other words, if a service cannot
be deployed to a node, then it will not be deployed into the
system. In order to help the algorithm to decide where to
deploy a service, a utility function is defined, which in this
case is only based on two parameters, the percentage of CPU
utilization (Ux) and the memory requirements (Mx):

UH
x = f(Uh

x ,M
h
x ) = K1hxU

h
x +K2hxM

h
x (3)

Eq. 3 uses parameters K1hx and K2hx to quantify the relative
importance of CPU and memory utilization, respectively. The
value UH

x of the utility function is used to optimally assign a
service to a host according to its requirements and resources
needed. The pseudocode for service deployment is given in
Algorithm 1.

Algorithm 1 RVAF Optimal service deployment
Input: List H of possible hosts H in the SoS, and a service

Sx to be deployed
Output: The host H with maximum utility UH

x where Sx

should be deployed
1: L = NULL //list of hosts H matching the deployment

requirements
2: for all H ∈ H do
3: F = CI(”VerifyServiceRequirements”,H ,Sx) //are the

requirements satisfied?
4: if F == true then
5: Append(L,H) //add host H to the list L of hosts

matching Sx requirements
6: end if
7: end for
8: H = argmaxH∈L UH

x //get matching host with best utility
or NULL if L is empty

9: return H

If the service’s requirements match the host’s properties
the service can be deployed to the selected host. Service
deployment is controlled by a global container orchestrator
or a custom reconfiguration algorithm that triggers a set of
tasks in the CI/CD system for the deployment of the service
Sx to a host Hx. In the example shown in Figure 3 the Service
Deployment algorithm instructs the Jenkins CI tool to deploy
service Sx to the Host Hx, and push the new configuration to
the deployment orchestrator.

The container network on the Hx will be updated with
the addition of service Sx. The capabilities of the AF allow
services to be migrated from a host to another while main-
taining full functionality. Moreover, local AF clouds can share
services through secure connections. The deployment process
on an infrastructural scale can be regarded as a technicality.
However, service reorchestration at the application level needs
to be coordinated with the local AF orchestrator service, and
with the AF orchestrator service on the destination host Hx.
The AF is designed to allow this kind of dynamic service
orchestration [13].

C. Algorithm for run-time adaptation

The problem of deriving the correct QoS parameters, like
processor utilization and memory footprint, is very difficult in
open IoT systems, where the burden of finding out what is a
predictable behaviour for a service, prior to run-time, can have
a very high cost to the system developer, or it can even be an
impossible task. This problem is mainly due to the following
factors:



Algorithm 2 RVAF Run-time monitoring and adaptation:
Migration Action
Input: A measurement M of the monitored parameters re-

lated to service Sx

Output: System-redesign alert or a migration mSxHa → Hb

of Sx from Ha to Hb

1: M = RM(”getMonitoringData”,Ha,Sx) //get monitoring
data for Sx from RM

2: F = QoSM(”UpdateQoSdata”,Ha,M ,Sx) //get violation
flag from the QoSM

3: if F == True then
4: RM(”QoSViolationAlert”,Ha, Sx) //publish violation

alert to RVAF services
5: H = CI(”getHostList”) //get the current list of hosts in

the system
6: Hb = Algorithm-1(H, Sx) //get the optimal host for

migration
7: if Hb != NULL then
8: CD(”migrate”,Ha,Hb,Sx) //tell CD to migrate Sx

from Ha to Hb

9: else
10: RM(”SystemRedesignAlert”,Ha,Sx) //publish

redesign alert to service Sx

11: end if
12: end if

i Different programming languages and/or algorithmic con-
structs can be employed whose behavior in time may be
hard to predict;

ii A service can be deployed on different hardware plat-
forms and this can be accomplished with different hard-
ware configurations;

iii No prior knowledge is available on how other applica-
tion/services interfere with the behaviour of the newly
developed service.

The solution in RVAF is to continuously monitor the exe-
cution data related to a particular service, in order to derive
its appropriate QoS parameters. This is of utmost importance
for services deployed on hosts, where no data is available
in advance, for the execution of the given service. A simple
solution is described in Algorithm 2. The function Update QoS
data on Hx can use a very simple algorithm, like calculating
the weighted average of the last N values, or it can use
more sophisticated algorithms, capable of detecting outliers
and filtering out the data. These solutions deserves further
investigation.

The results of Algorithm 2 can be used by the RVAF-
SO to trigger the migration of service Sx from host Ha to
host Hb. In case the service deployment fails, when executing
Algorithm 1, then a system redesign requirement is signalled
to all subscribed hosts. In this extreme case, the application
itself fails, and the overall system must return to design phase,
as described in Figure 1.

In addition to migration, RVAF is capable of using various

other actions, such that the IoT application best adapts to
various scenarios. For example: reduction or expansion of
available resources, version rollback, and service termination.
This requires an extension of the decision process of RVAF-
SO, based on the list A of available actions A. For each action
A and failure F , we assume that SO can compute a decision
weight wF

A according to the current system load:

∀A ∈ A, ∀F ∈ F , ∃wF
A ∈ R (4)

Algorithm 3 shows a simple action-selection algorithm for
RVAF-SO. This algorithm is supposed to be called by Algo-
rithm 2, right after the QoS violation is detected. Algorithm 3
will then choose the optimal action for the specific failure F
of Service Sx, with ”migration” as a default option. This SO
ability in RVAF can be extended with other self-awareness
mechanisms, such as GAMS [14].

Algorithm 3 RVAF Action evaluation: Picking optimal action
Input: QoS violation alert F for measurement M of service

Sx

Output: Optimal action A for failure F

1: A = CI(”getActionList”,F ) //get all available actions as-
sociated with failure F

2: return argmaxA∈A SO(”getWeight”,A,F ) //return action
A with best wF

A

VI. IMPLEMENTATION RESULTS

Fig. 5. Component diagram of the implementation



To illustrate the usefulness and versatility of RVAF, we
implemented an industrial conveyor-belt application (CBA)
with sorting capabilities. The CBA receives information from
three induction sensors located on the belt. This information is
aggregated in a fog node, in form of a sensor data aggregation
service. This can be consumed by a sorting service, located
either in the same fog node, in another fog node, or in the
cloud. The sensors tell the sorting service, whether an object
on the belt is metallic or not. If it is metallic it should be
discarded from the belt. This is achieved by the sorting service
by using a motor-driven actuator. The sensors and the actuators
are interfaced to the CBA services through a soft PLC and an
OPCUA server, both located on a fog node.

In Figure 5, we show a possible IoT-based realization of this
application, with a redundant fog node, which is capable of
replacing the main node, in case of failure, or QoS violation.
Each fog node runs a local AF system, and a number of
services, including the ones controlling the conveyor belt. The
cloud consists of four virtual machines, which are allocated
to the RVAF components as follows: CI in VM1, CD in
VM1-VM3, RM in VM4, and SO in VM3. The Jenkins
tool is used to implement the CI, the Docker Registry is
used to store service-container images, the K3S is used as
the deployment orchestrator, the SO is our reconfiguration
platform given by Algorithms 1-3, and the Prometeus tool
is used for data-logging and monitoring purposes. In order
to monitor various services concurrently, we use a set of
monitors, such as SA1-SA2 and SB1-SB2. The monitoring
code is either automatically generated from the associated
STL specifications, or written directly in PromQL. For the
fog nodes we selected the Raspberry Pi platform.

Services are deployed in a single Docker container per
service, and can be individually started, stopped, migrated or
rolled back via a deployment orchestrator. Originally we used
the Docker Swarm deployment orchestration, however due to
the application in IoT, limited resources and development state
of the tool we found K3S [15] to be much better suitable for
the given task. K3S is a lightweight version of Kubernetes
[16] designed for embedded devices and IoT. Each individual
service can be observed on the application and container level,
on top of the QoS management provided by K3S we add a
an application level QoS management in combination with
Arrowhead QoS manager.

Figure 6 shows a memory leak trace of a service in the sys-
tem given in Figure 5, and its migration to the redundant host.
It is in the nature of SOA approaches, that the development
of services is done by different individuals and organizations.
Thus, SOA approaches are error prone. However, the isolation
capabilities of container-based deployment, allows us to detect
faults and perform corrective actions with least amount of
disruption for the entire system. The legend shows several
metrics, where the last two (marked in bold) show the memory
consumption in two containers. In the considered scenario, the
memory leak in one of the services can be disruptive, and
deny other services valuable resources, for reaching required
reaction time. Mitigation by migration allows us to restart the

Fig. 6. Service migration results on memory leak

Stage Average Time (s)
From detecting fault to orchestrator alert 0.82
Terminating faulty service 0.25
Terminating container 1.91
Redeployment of the container 1.74
Service activation with full JVM stack 3.49

TABLE I
TIME OVERHEAD ON SERVICE REDEPLOYMENT

service on the other fog node, where such behaviour can be
better tolerated.

Table I shows time measurements on different stages of
the redeployment process. The response times can be further
optimized by reducing overhead from different unnecessary
functions in the used tools. As a example service we used a
consumer template provided by Arrowhead. It is implemented
in Java, hence longer startup time. This can be significantly
reduced by using optimized service implementation. In case of
migration of services from one node to the reaction times are
similar to the ones showed in the I. An additional overhead
can be created by using internal K3S scheduling mechanisms
for migration. It will try to ”save” the node if possible before
resorting to migration, this can create additional overhead on
the process. This can be also reduced by configuring K3S for
specific time limits during deployment or migration.

VII. FUTURE WORK

Various runtime monitoring tools have been developed
over time, and they use domain-specific languages, to define
individual monitors [17], [18]. These languages typically have
a formal semantics, such as the signal temporal logic (STL)
of [19]. They allow to verify during runtime, if the observed
(monitored) behavior of the system, satisfies its given specifi-
cation, standard, or regulation.

In RVAF we plan to introduce a translation system to
formally capture performance properties (e.g., CPU and
Memory usage) and functional properties in STL, query
the multi-dimensional data acquired from a variety of
sources with PromQL, and check their satisfaction. As an
example, suppose that the CPU usage of the service Sx in
an application A cannot exceed 80%. This can be formally
specified in STL, and thereafter be compiled to a runtime
monitor containing PromQL language queries, as follows:

STL:
A |= G (Sx[t] < 80)



PromQL:

sum(rate(cont_cpu-total_sec="Sx" [1m])) /
count(node_cpu_seconds_totalmode="A")*100<80

In future work we also plan to improve AF quality of
service manager (QoSM), by fully integrating the the RVAF-
CI/CD with the AF-QoSM. We also plan to harmonize the
RVAF orchestration-service with the one of AF, within the
Arrowhead local cloud or cluster. Finally, we plan to extend the
library of actions that are made available for self optimization
to the RVAF users.

In particular, AF local clouds have an orchestration service
maintaining application level interfaces between services. This
ensures the security and stability of the whole ensemble. Main-
taining stability during RVAF adaptation, requires the harmo-
nization of RVAF-SO with AF-QoSM and AF-Orchestrator,
within the cloud. This can be performed at runtime in the
following ways:

i Directly interface AF-QoSM with the RVAF-SO. The
QoS violation alerts are sent to both simultaneously, and
they agree on a mitigation strategy. This way the AF-
QoSM is aware of any requirements violations, and is
able to communicate potential changes to the Orches-
trator. The Orchestrator updates local or remote cloud
connections to the faulty service.

ii Rely on the self-awareness of the local AF cloud and
perform mitigation actions for QoS violation, without
informing AF-QoSM and AF-Orchestrator. This way, the
consumer services are not aware of the changes, until the
service is available and reintegrated in the AF system.

iii Rebuild a static configuration of the whole cloud/cluster,
and restart the cloud with a new service configuration.

VIII. CONCLUSION

IoT applications are generally complex because they are
often both distributed and heterogeneous. Moreover, the ex-
tension of IoT infrastructures to industrial domains, with high
demands for dependability and security, requires the ability to
monitoring and ensuring a certain level of quality of service.

This can be achieved by employing modern, continuous
integration and continuous deployment tools (CI/CD), which
are nowadays an essential part of the development lifecycle of
any complex software artifact.

This paper introduced RVAF, an IoT-enabling and service-
oriented (SOA) infrastructure, combining the QoS concepts of
the Arrowhead Framework (AF), with the CI/CD deployment
tools, runtime verification/adaptation, and the computational
capabilities of cloud computing. RVAF supports the develop-
ment of IoT systems that have the ability to: i) Monitor large
scale applications in real time, ii) Verify and detect system
properties, and iii) Perform self-optimization and service-
redeployment during runtime.
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Abstract. This paper provides a short overview on methods and tech-
nologies necessary to build smart and sustainable Internet-of-Things
(IoT). It observes IoT systems in a close relation with data centered
intelligence and its application in cyber-physical systems. With the cur-
rent rate of growth IoT devices and supporting CPS infrastructure will
reach extremely high numbers in less than a decade. This will create an
enormous overhead on world’s supply of electrical energy. In this paper,
we propose a model extension for estimation of energy consumption by
IoT devices in next decade. The paper gives a definition of CPS/IoT
Ecosystem as a mutually codependent heterogeneous multidisciplinary
structure. Further we explore a set of methods to reduce energy con-
sumption and make CPS/IoT Ecosystem sustainable by design. As a
case study we propose energy harvesting sensor node implemented as a
wildfire early detection system.

Keywords: internet-of-things, energy consumption, sensor networks, energy
harvesting

1 Introduction

The rapidly expending world of internet-of-things (IoT) is changing technological
landscape for civil, industrial and social projects. It is projected that the number
of IoT devices is going to reach 100 billion until year 2025 [40]. An average
energy consumption of Raspberry Pi 3 devices is between 1Wh and 5 Wh [37].
To approximate average energy consumption of IoT application to about 4 Wh
in the next 10 years we used following estimation formula, based on the models
described in [7].

EIoT = (EIoTa
×AR+EIoTp

× (1−AR))× T ×DIoT × (
100%− ER%

100
)n (1)

(EIoTa
, EIoTp

) are projected average consumption per device for an active
and passive (i.e. sleep mode) operation.
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(AR) provides the ratio between active and passive operation of a device,
we chose three arbitrary cases as best, average and worst.
(DIoT ) is projected number of IoT devices.
(ER) is projected energy efficiency increase as proposed by [7].
(T ) is time in operation over a year.
(n) provides projection period in years.

Case AR DIoT (109) ER(%) T (h) Period EIoTa(Wh) EIoTp(Wh) EIoT2030(TWh)

Best 0.01 100 5% 8640 10 4 2 532
Avg 0.3 100 4% 8640 10 4 2 1493
Worst 1 100 1% 8640 10 4 1 3125

Table 1. Different case scenarios depending for IoT device activity related to energy
consumption.With the energy consumption projection of IoT devices in 2030.

IoT revolution will bring enormous influx of devices that are not always
designed in energy efficient way as they are not considered as major energy con-
sumers. However, if the quantity of these devices reaches the levels mentioned
above it could create enormous overhead in energy consumption. Table 1 also
provides three projections of energy consumption based on the Equation 1 in year
2030. In addition, there is energy consumed by cloud infrastructure as the num-
ber of cloud applications will increase accordingly. Cloud server infrastructures
are already consuming enormous amounts of electrical energy, with up to 1.5% of
total worldwide consumption [35]. With the influx of new IoT applications, data
and emerging applications as a result it is evident that the cloud server capacity
needs to be increased. Authors in [7] provide an estimate of cloud infrastructure
energy consumption in range of 1000 TWh up to 8000 TWh. In addition there
is a consumption required for communication. This approximation intends to
show possible scale of the IoT energy consumption overhead. It is evident that
energy efficiency of new devices will improve but the quantity of possible devices
is still overwhelming. To put this in a perspective an average energy production
of European Union (EU) is not around 3400 TWh over past couple of years
[8]. Sustainability of the IoT applications and infrastructure depends on an en-
ergy efficient methodological design of IoT devices and applications, optimizing
existing devices and applications, communal use of infrastructure, and energy
harvesting capabilities.

In this paper, we are exploring energy aware design of IoT devices as a
requirement for constitution of sustainable CPS/IoT Ecosystems. We define
CPS/IoT Ecosystem as ”a heterogeneous structure of hardware devices, and
corresponding software components distributed over tree intertwined scopes of
operation: cloud, fog/edge, and sensor/actuator nodes” [30]. These systems are
distributed over different platforms and infrastructural facilities such as a power
grid, the Internet, or a mobile grid. It is extremely difficult to maintain oversight
on energy consumption over the whole composition. We propose technologies and
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methods that can be used to ensure energy efficient and sustainable design from
the perspective of sensor nodes. First, we will explore a set of methods that can
be applied from the hardware design and up to ensure most beneficial perfor-
mance to energy consumption ratio. Further, we will show examples on how to
design a sensor node for IoT with low or completely neutral energy signature.
Finally we will show how to optimize existing systems by introducing methods
such as hardware acceleration.

In Section 1 we explore a problem of energy consumption overhead created by
IoT devices and supporting CPS infrastructures. We propose an extended power
consumption estimation model for IoT devices. Section 2 gives an overview of
related activities on the topic. In Section 3 we provide a definition of CPS/IoT
Ecosystem. Section 4 gives methodological steps towards energy aware CPS/IoT
Ecosystem. Further, Section 5.5 proposes a sensor node that utilizes energy har-
vesting methods. Section 6 gives a short overview on a use case that can be
realized with the described energy harvesting sensor node. Last two sections
conclude the paper and provide due acknowledgements.

2 Related Work

The problem of the rapidly growing IoT market among with its energy needs,
requires focussing on possible solutions for an efficient energy use on all the
CPS/IoT Ecosystem’s scopes. In this context, different approaches have been
tried to reduce the energy consumption of sensor networks as, for example, trying
alternative routing schemes to achieve a network lifetime increase as well [43].
Moreover, in traditional networks, the network configuration is not changed after
initialization, but energy consumption improvements are noticed by adaptive
network configuration where, if the distance between two sensors is calculated,
the transmission power can also be adjusted avoiding the use of unnecessary
power [48]. Further, analysing the architecture of a sensor, the main components
that affect to their lifetime are identified so that aggressive energy optimization
can be performed [38]. Nonetheless, the data centers used for cloud computing
are an important point to consider regarding energy consumption. These centers
can host up to several thousands of servers and they reach 1.1% to 1.5% of the
total electricity use worldwide and is likely to rise [35]. In this context, an efficient
cloud computing is crucial for which diverse hardware and software strategies
can be adopted in all the levels that compose a data center [32][25][17]. An
efficient operation can also be achieved for the Edge scope’s components such as
cloudlets balancing the workload across the nodes or adapting their configuration
to manage latency and energy consumption [47].

In addition to managing the energy consumption, a wide range of energy
harvesting methods can be used as an extra power source [28]. One of the main
energy harvesting techniques is based on vibration energy scavenging. Its appli-
cations range from railway vehicles [26] to supplying hearing aids [6]. Other main
method focuses on the solar energy which can be used to power sensors on both
outdoor and indoor environments [22][39][27]. However, the energy source this
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paper focuses on is the thermal by using thermoelectric generators. The usages
cover industrial applications to recover waste heat from engines and increase
the vehicle’s overall efficiency [31][24][16] as well as using an aircraft’s fuselage
varying temperature to power autonomous sensors and perform diverse measure-
ments [41]. As a human body constantly generates heat, several studies have also
been carried out to take advantage of it to power autonomous wearable electron-
ics like watches, medical devices or other types of sensors [34][33][12]. However,
the need to make the energy scavenging unobtrusively limits the power that can
be obtained.

These autonomous sensors can be placed in inaccessible places where bat-
tery replacements are not possible so they only rely on the temperature gradient
across the thermoelectric generator to work. Additionally, a wireless transmis-
sion module can be added to their structure to track the measurements remotely
[15][14][9]. These sensors will perform the programmed tasks as long as a min-
imum temperature gradient is achieved. Nevertheless, alternative storage ele-
ments like supercapacitors can be employed to manage the generated power and
keep the system working even if this power is discontinuous [42]. A similar ap-
proach is presented in this paper, but an event detection circuit is introduced
so the measurements are performed only under certain circumstances and the
generated energy is just stored otherwise.

3 CPS/IoT Ecosystem

In Section 1 we structurally defined CPS/IoT Ecosystem, in this section we will
give a motivational overview and functional description of this concept. The IoT
allows us to connect physical environment with a digital infrastructure, collect its
data and store it for the purpose of later or runtime analysis. CPS is a collection
of practical and theoretical methodologies that allow us to interpret physical
data, create models of physical environments using this data, recognize and
extract emerging behaviours and use them to optimize system in question. We
observe two concepts as separate disciplines but highly dependent on each other.
We conceptualize CPS/IoT Ecosystem structurally in three scopes of operation:

Cloud The cloud infrastructure provides the ability to construct computational
units based on computational performance or storage requirements in an auto-
mated and scaleable fashion. It can compute and store enormous amounts of
data and made it available to large number of users at the same time. This is an
essential requirements for the large scale data analysis. Cloud servers are located
at remote locations and accessible exclusively through internet.

Fog/Edge The concept of fog and edge computing describes platforms with abil-
ity to perform computing and storage tasks in relative proximity to a physical
environment and with extremely low response rates [11]. Fog hosts time sensi-
tive tasks such as control loop execution where it is required to perform complex
calculation based on historical data with low latency. Fog and edge devices are
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located within the same facility and are communicating using local area network
from one side and the Internet to communicate with cloud level if necessary.

Sensor and Actuator There are two basic types of devices that allow to interact
with the physical environment, either by observing it or manipulating it. The
sensors and actuators are implemented using low energy, low performance de-
vices that are deployable in an imminent proximity to the observed object. The
number of these devices is manifold of what is required on the upper levels and
although they use less energy it needs to be considered based on the quantity.
These devices are often placed in inaccessible locations with limited mainte-
nance capabilities and their energy supply relies on energy storage devices such
as batteries, or on their ability to harvest energy from the environment.

4 An Energy Aware CPS/IoT Ecosystem

CPS/IoT Ecosystem is a concept that allows to transform real data from a phys-
ical environment into valuable information, in order to increase efficiency of a
system in different ways. This process requires number of layers of technology
from hardware and software perspective. It relies on massive data collection and
processing, learning statistical and mathematical paterns, applying optimiza-
tions and novel applications for forthcoming and legacy systems. The scale of
this undertaking will require a massive number of devices from sensor to cloud
level. In Table 1 possible energy consumption scenarios for IoT, plus overhead on
Fog and Cloud infrastructure as shown in Section 1. This is why it is necessary
to reduce its energy footprint by adopting various methods that increase overall
efficiency and reduce energy consumption in all scopes of operation. In this sec-
tion we will discuss methodological approach that would outperform commonly
used approaches.

Energy aware design for CPS/IoT Ecosystem has multiple dimensions. It
doesn’t depend on hardware or software alone, it is rather a ”full stack” problem
starting from a system model to the final application artefacts.

Standardized IoT Model One of the major obstacles in development of IoT sys-
tems is lack of standardization. IoT is building on top of embedded programming
that has a significant number of libraries. A model based approach to develop-
ment of IoT would ensure use of verified code that can be configured between
energy and performance optimal instance. A model based approach would be
realized in multiple aspects such as hardware platform model, service model,
network model, application model and eventually wrapper model to unify all
above mentioned cases. This would increase oversight and traceability of the
system, reduce maintenance cost and increase resource utilization.

HW/SW Co-design CPS/IoT Ecosystem applications are dependant on full
range of devices from a cloud server with high-power CPU, to microcontrollers
in embedded devices and custom designed hardware for networking solutions.
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Use of FPGA or hybrid architectures is widely accepted, and its application in
CPS/IoT applications is more than beneficial. Molding HW/SW platform to
specific needs provides the advantages of a dedicated platform such as resource
utilization and performance and flexibility of a COTS platform. Both IoT and
CPS can profit from custom designed accelerators or IP blocks. Both ends of the
CPS/IoT Ecosystem can benefit from a targeted application acceleration. Using
hybrid architectures such as Intel Arria 10 [2] or Xilinx Znyq [3] applications
have access to a standardized CPU architecture and FPGA device within the
same platform. The FPGA is ideal for acceleration of mathematical tasks, net-
work routing, security tasks or other application specific IP. Study presented in
[29] showed massive acceleration for tasks such as matrix multiplication up to 5
times and reduced energy consumption up to 4 times. This comes with a cost of
flexibility and programmability but with application of high level synthesis tools
it can be significantly reduced.

Energy Harvesting IoT is a leading industry in propagation of energy har-
vesting solutions from a piezzo electric auto-charging switches to solar driven
fog and/edge stations. By adding energy harvesting capabilities use of electri-
cal power from grid can be significantly reduced or completely neutralized as
shown in Section 5.5. Environmental sources for energy harvesting are [10]: a)
mechanical energy in form of vibration or movement with examples of piezzo-
electric generators, wind and water turbines, b) Solar energy generated by the
sun with examples of photo-voltaic generators or thermal generators, c) Ther-
mal energy generated by environment with example of thermoelectric generator
(TEG), electromagnetic energy generated by surrounding electromagnetic fields
and converted into electricity by electromagnetic induction.

5 Energy Harvesting Sensor Nodes

In this section we propose an energy harvesting sensor node for remote data
collection over narrow-band communication network. It is a sensor device that
can use any of the above mentioned energy harvesting sources and can be de-
ployed in a remote place with little to none maintenance. The sensor device is
designed to track a specific event such as abrupt temperature rise or extreme
kinetic forces in the environment. It is an environmental friendly device with no
chemical batteries and low energy storage.

The sensor device shown in Figure 1 is based on thermo-electric generator,
which produces an electric power on a temperature gradient in the surrounding
environment. It powers a microcontroller centered device over a power manage-
ment unit (PMU). The power management unit uses a supercapacitor as an
energy storage element and gives a stable regulated voltage necessary for MCU
to perform its tasks. As an interface between MCU and PMU an event detec-
tion circuit is placed. It tracks outside event and releases power to the MCU
when the stable voltage is reached. The MCU is further interfaced with a Sigfox
transceiver and two sensors, a temperature sensor and a global positioning sen-
sor. When the temperature of the environment reaches threshold it will generate
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Fig. 1. Designed system’s architecture

enough power to wake the MCU, acquire data from sensors and transmit the
message over Sigfox network.

5.1 Thermoelectric generator (TEG)

The selected TEG device for this application is the TEG1-24111-6.0 manufac-
tured by Tecteg MFR [36]. As high temperatures may be reached during an event
detection and its processing, it is important that the TEG module can work in
that range so the chosen module is designed with high temperature bonding ma-
terials allowing it to withstand temperatures of up to 320 °C and offers superior
performance when its hot side is over 150 °C.

5.2 Power Management Unit

The output obtained from the TEG module is a varying irregular voltage so that
it cannot be used to power the MCU. Therefore, a treatment stage is added mak-
ing use of the ADP5092 [19]. This is an ultralow power energy harvester PMU
which offers a wide range of configurations so it can be configured in accordance
with the energy harvesting source and the connected load requirements.

The board offers a Maximum Power Point Tracking (MPPT) control which
can set the maximum power point ratio for the energy harvester obtaining the
maximum available power from it. This is configured in its dynamic sensing
mode and adjusted for a TEG harvester.

Rechargeable batteries, capacitors or other storage elements can be charged
with the obtained energy so it can later be used to power the load when needed.
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In this case we are using the Eaton’s PB-5R0H474-R [23] supercapacitor with
0.47 F and 5 V . Less environmental friendly option would be a battery supported
device that can easily be integrated in the device.

The PMU provides two power outputs, an unregulated power output for
charging of the supercapacitor, and a regulated power output for direct supply of
the microcontroller. The unregulated output is connected to the storage element
so its voltage changes with the supercapacitor’s charge. The regulated output
with a current limit of 150 mA is available, which is sufficient to run the MCU as
described in Section 5.4. The output voltage is set to 3.6 V but can be regulated
from 1.5 V to 3.6 V . The regulated output is used to power the load in this
approach while the unregulated output is directed to the event detection circuit
as explained in section 5.3.

Additionally, a couple of control features are used by the MCU to make
a more efficient use of the PMU: RF interference are avoided by temporarily
shutting down the boost regulator when a Sigfox message is going to be sent
and the quality of the regulated output is checked before performing a cycle’s
actions.

In order to get an easy way to evaluate the ADP5092, the ADP5092-1-EVALZ
evaluation board [21] has been chosen. This board provides a default working
configuration which can be easily adjusted replacing any necessary component
and making use of the provided jumpers.

5.3 Event detection

As one of the key steps is the event detection to know when to perform the
measurements and data transmission, a circuit has been designed to ensure a
correct detection.

In this case event detection is fully corelated with the energy generation
event. This means that the sensor node is triggered when the enough energy
is generated. To start energy generation TEG device requires a temperature
gradient between exposed and isolated side of the device. The design of the device
provide us with physical means to ensure the gradient necessary to generate
enough power. For the current version a required gradient is 50 °C. This will
correspond to aproximate 2 V regardless of the working temperature, so this is
the threshold of the desired event. Figure 2 represents the designed circuit to
detect events over the defined threshold.

The thermoelectric generator is connected to the PMU and a 3.6 V regulated
output is obtained to power the board. The board should be powered just when
an event is detected and shut down otherwise so to control this, a comparator
based circuit has been designed. This comparator compares the TEG output to
the defined event threshold. To get this fixed voltage, the unregulated output
of the PMU is directed through a low-dropout (LDO) regulator. The regulated
output is used as the positive power supply for the comparator while the negative
supply is connected to ground.

When the TEG output is higher than the threshold, the comparator gives
a low output. Otherwise, when the TEG output is below the threshold, a high
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Fig. 2. Event detection circuit

output is generated. In order to control the board supply with this output, a
transistor that acts as a switch is used. The comparator’s output is connected to
the transistor’s base through a resistor (RB1, so a low comparator output causes
the transistor to work in its cut-off region leading to power the board, and a high
output causes it to enter its saturation region resulting in a board shutdown.

Additionally, a shutdown prevention connection has been added to ensure
the board is supplied until it finishes all its process. Otherwise, the TEG output
could drop below the detection threshold causing a sudden board shutdown even
if enough energy is still available in the PMU. This prevention is achieved by
controlling the ADP165 voltage.

The ADP165 is a very low quiescent current, LDO, linear regulator [18].
Although an event detection threshold has been defined, the adjustable output
option has been chosen over a fixed output to have some flexibility if any change
is needed in the future. Figure 3 represents the used configuration.

To set the output voltage, R1 and R2 are adjusted. Additionally, the regulator
can be enabled or disabled by means of the EN pin which is used for the board’s
shutdown prevention using a similar approach as before with a transistor. So,
the regulator is working when the board is not powered but it is disabled after an
event is detected. This means the regulator gives a low output forcing the TEG’s
comparator input to be always higher. The ADP165CP-EVALZ [20] evaluation
board that simplifies the testing process has been used to try the configuration.

5.4 Microcontroller

The B-L072Z-LRWAN1 discovery kit [44] has been used in this project. It is
a development tool which includes the CMWX1ZZABZ-091 open module by
Murata allowing to use LoRa and Sigfox technologies. Being powered by an
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Fig. 3. ADP165 voltage regulator circuit

STM32L072CZ microcontroller which offers an ultra low power consumption
makes it a great choice for IoT and energy harvesting applications.

Location acquisition One of the relevant data to be acquired is the current
location of the board for which the X-NUCLEO-GNSS1A1 module has been
used which represents an easy-to-use, GNSS solution [46]. Both UART and I2C
interfaces are available to establish a connection but UART is used in this case.
It is compatible with the Arduino UNO R3 connector also present in the B-
L072Z-LRWAN1 making it easy to connect them and allowing to stack extra
components.

Temperature sensor The temperature is another important parameter to
track as it conditions the performance of the whole system. The sensor chosen
to read it is the analog low power consumption STLM20W87F by STMicro-
electronics [45]. However, the analog KY-013 module has been used for testing
purposes. It consists of a NTC thermistor whose resistance changes with the
temperature leading to an output voltage variation. The sensor is connected
using the Arduino UNO R3 [1] connector of X-NUCLEO-GNSS1A1 since it is
stacked. Then, the real temperature is obtained using the ADC.

Operating mode Different possible operating modes for the board have been
identified. The chosen operating cycle is shown in Figure 4.

Increase in outside temperature creates a temperature gradient that gener-
ates electrical potential. When the power management unit detects this event it
releases current and activates the board. This could be a short term event and
take up to few seconds at most, so the energy is stored in the supercapacitor.
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Fig. 4. Flowchart of the MCU’s operating cycle

The power management unit releases the energy from supercapacitor to power
up the board.

Once powered up, the quality of the supply voltage is checked making use of
the REG GOOD pin in the PMU. If a high signal is read, the board reads the
temperature and location measurements to, finally, send the data. Otherwise,
the board is powerd down and until next event.

As the detected event may still be active after the first data is transmitted,
and some energy may be available yet, the measurement and data transmission
steps are repeated until there is not enough energy to repeat the process or a low
signal is read in REG GOOD. Like that, a complete event tracking and analysis
is done.

Another option that we considered is to enter the standby mode and stay
there until an event is detected. At that point, an interruption that wakes up the
device is triggered, and the measurements are performed before the device goes
back to standby mode. The main reason for the cycle selection is the uncertainty
of the available harvested energy amount. As it is not known when an event will
happen, the amount of time the device can stay in standby mode is undefined
and, although its power consumption is very low, it needs a continuous supply
which may not be available. Taking this into account, the selected mode fits
better, powering the board just to track an event once it is detected.
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Power consumption A rather pessimistic estimation for the power consump-
tion of each step as well as the time spent on it is shown in Table 2. It is worth
noting that the estimation has been done considering a supply voltage of 3.3 V .

Power mode Stage Power consumption Time CPU/Bus frecuency

Run Board start-up , REG GOOD checking 8.12 mA 500 µs 32 MHz
Run Location acquisition 33.11 mA 8 s 32 MHz
Run Temperature reading 18.11 mA 25 µs 32 MHz
Run Signal Tx 128.11 mA 2.1 s 32 MHz

Table 2. Execution cycle steps’ power consumption.

Taking this data into account, an average current consumption of 52.86 mA
is obtained.

5.5 Sensor node evaluation

Energy harvesting sensor node was implemented in an experimental setup. It
was used to test individual behaviour of components and the sensor as a whole.
However, the TEG output was simulated making use of a power supply.

Fig. 5. System testing results

While testing the whole system, the following points were measured with an
oscilloscope:
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– Channel 1: Board power supply.
– Channel 2: TEG output simulation, Vin.
– Channel 3: Regulated output from the PMU.
– Channel 4: ADP165 output.

The captured results can be seen in Figure 5. First, Vin increases until it gets
higher than the ADP165 output. The comparator makes the transistor work
in its cut off mode forcing a high board supply. Then, Vin gets lower than the
ADP165 output, so the board’s supply gets low. Later, the ADP165 output drops
to a low voltage when the shutdown prevention is activated. At this point, as Vin

is higher, a high board supply is obtained always. After the shutdown prevention
is deactivated, it returns to its initial operation.

If the shutdown prevention is activated, because the board is working, and
Vin drops to low, the supercapacitor’s voltage will also start to drop. When it
discharges enough, the regulated output will go low forcing a low board supply
as well. Whether the supercapacitor is charged, a high output will be present
again. This behaviour is shown in Figure 6.

Fig. 6. System discharge testing

6 Energy Harvesting Use Case

The sensor node described in 5.5 can be applied in number of use cases. We
are currently testing a prototype for a wildfire detection device. Despite all
warning systems and services 100 people are confirmed dead during wildfires
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in Greece in 2018 [4]. In United States in the state of California an area of
7664,39 km2 was caught in one of the largest recorded wildfires in the US, 89
people are confirmed dead [5]. In addition, the economic and environmental
impact of these natural catastrophes is colossal. The damages to infrastructure,
public and private properties are measured in billions. Furthermore, damages to
wildlife and environment are enormous and areas affected will require years to
recover. The proposed wild-fire detection device would provide both localized
and global early warning system for wild-fires. When combine with current early
warning systems it would be able to increase precision and timeliness of detected
fires on a large scale. With approximately 800 sensors we would be able to cover
up to 50 km2. In addition to satellite based detection systems such as [13] this
could be extended even further. To cover the area burned down in California
it would take about 160000 devices. However, it is not necessary to cover the
whole area, instead it would be enough to create a mash based on geographical
parameters or protect residential, industrial or agricultural zones. The cost for
the deployment of wildfire energy harvesting sensor nodes is almost insignificant
to the amount of damage created by the fire. The devices showed in Figure
7 can be placed on the endangered area with a distribution pattern that will
complement other detection methods. This area should be covered with the low-
band communication network, in this case we used Sigfox. The advantage of
the radio based networks is the large coverage range and low power compared
to other wireless communication networks. The device can stay dormant for
years until a activation events occurs. In this case the activation event is a high
temperature (or temperature gradient) generated by the fire. The sensor device
will be triggered and sends a burst of alert messages containing temperature and
location via narrow-band communication network to the cloud. Monitors in the
cloud will notify authorities and provide them with the early detection necessary
for a rapid response.

Figure 7 shows a package prototype of the energy harvesting node for the
use case above. This design utilizes slow changing temperature of the ground
in contrast to the air temperature, that changes rapidly in case of wildfire. The
isolation layers divide hot and cold side of the TEG and ensure temperature
gradient is achieved necessary to power up the sensor node. The cost of the pro-
totype is given in Table 3 this can be reduced significantly in a serial production.
This would make the platform highly viable and affordable considering the cost
of the damages made by wildfires.

7 Conclusion

The number of IoT devices and supporting infrastructure used for CPSs is al-
ready affecting energy consumption and energy production models. This trend is
continuing to grow and energy aware solutions are necessary to balance out the
burden. In this paper, we proposed a model of estimating energy consumption
for IoT devices and supporting infrastructure. We provided a set of methodolog-
ical and design measures that could reduce energy consumption in CPS and IoT
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Fig. 7. Energy Harvesting IoT Node

Resource Quantity Unit cost (e) Total (e)

TEG1-24111-6.0 1 50.00 50.00
X-NUCLEO-GNSS1A1 1 32.76 32.76
KY-013 1 1.00 1.00
B-L072Z-LRWAN1 1 43.52 43.52
ADP5092-1-EVALZ 1 44.00 44.00
ADP165CP-EVALZ 1 35.00 35.00
PB-5R0H474-R 1 4.47 4.47
LTC6240 1 1.89 1.89
P2N2222A 2 0.22 0.22
Various resistors 9 0.50 4.50
Case 1 25.00 25.00

Total 242.58
Table 3. Cost structure for the prototype.
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significantly. Finally, we proposed an energy harvesting method that is simple
to produce and could be used to increase effectiveness of active early wildfire
detection systems. They could be used by individuals to protect their property
and also by official institutions to protect certain agricultural or forest resources.
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