
QoS for Dynamic Deployment of IoT Services
Isakovic Haris∗, Luis Lino Ferreira †, Irmin Okic∗,
Adam Dukkon∗, Zlatan Tucakovic∗, Radu Grosu∗

Technsiche Universität Wien∗, Vienna, Austria
CISTER Research Center†, ISEP Polytechnic Institute of Porto, Porto, Portugal

∗ name.surname@tuwien.ac.at, † llf@isep.ipp.pt

Abstract—This paper introduces RVAF, a runtime verifica-
tion (RV) extension of the Arrowhead Framework (AF) with
container-based service-deployment and runtime-enforcement of
a desired quality of service (QoS). AF is a service-oriented
middleware architecture for IoT-applications, consisting of a set
of core and auxiliary services and systems, respectively. The
QoS manager (QoSM) is one AF’s most important auxiliary
systems, which can be used to guarantee the application’s QoS
for a wide set of parameters. In RVAF the QoS offered to a
particular IoT-application is specified in signal temporal logic,
and is continuously monitored by the RVAF-QoSM. In case of
an imminent violation, RVAF automatically initiates a container-
based reconfiguration, which is ensured to maintain the desired
QoS. RVAF is beneficial to large IoT-applications, where the use
of continuous-integration and continuous-deployment tools, is not
only a recommended practice but also a necessity. Moreover,
the use of RVAF is advantageous both during the development
of an IoT application, and after its deployment. We describe
the architecture of RVAF, provide its formal underpinning, and
demonstrate the usefulness of RVAF supported by an industrial
IoT application. The main contribution of this work is to show
what it takes to incorporate RV concepts into modern SOA
frameworks supporting the development of IoT applications.

I. INTRODUCTION

Industrial digital systems (IdS) were originally designed
with a mission-oriented focus in mind. As a consequence, IdS
were homogeneous pieces of software, most often unable to
adapt to the changes occurring during their evolution, such
as the IdS’ subsequent integration with management, analysis,
or financial systems, respectively. In order to alleviate these
problems, the design of IdS is now increasingly adopting
the IoT paradigm, which is one of the major pillars of
the industrial-digitization initiative to optimizing production
chains [1].

The arrowhead framework (AF) is a middle-ware enabling
the service-oriented approach (SOA) to the development of
IoT applications [2]. SOA facilitates the construction of
generic services, that are later on integrated in various ap-
plications, as application-specific services. SOA thus greatly
enhances the reuse of services, and their integration into fine-
grained functionalities.

AF includes a set of core services, such as service discov-
ery, orchestration, and authentication, which in turn support
the interaction between application services, such as sensor-
reading or data-storage services [2]. Each service is a part of
a system-of-systems (SoS) and acts as a completely separate
software entity. As such, services are developed, operated, and
maintained by different groups, organizations, or individuals.

Ensuring a seamless integration between development and
maintenance on the one side, and the quality of service (QoS)
during operation on the other side, are overlapping tasks.

This paper introduces RVAF, a continuous integration and
deployment, RV-extension of AF. RVAF supports the con-
tinuous service integration/deployment in a container-based
fashion, and the runtime enforcement of a desired quality of
service (QoS) through adaptation. In RVAF the QoS guar-
anteed to a particular IoT-application is specified in signal
temporal logic (STL), and continuously monitored by the
QoS manager (QoSM). As shown in Figure 4, in case of an
imminent violation, RVAF automatically initiates a container-
based reconfiguration, which is ensured to maintain the desired
QoS. RVAF is beneficial to large IoT-applications, where
the use of continuous-integration and continuous-deployment
tools, is not only a recommended practice but also a necessity.
Moreover, RVAF use is not only beneficial after the deploy-
ment of an IoT application, but also during its development. In
addition to describing the architecture of RVAF and providing
its formal underpinning, we give proof of concept of the
usefulness of RVAF based on a real-life, industrial scenario.

The rest of the paper is organized as follows. In Section II
we introduce AF, followed by related work in QoS on Ar-
rowhead. In Section IV we discuss RVAF architecture and
in Section V its formalization. In Section VI we present our
experimental results on a conveyor-belt scenario. Finally in
Section VIII we draw our conclusions and discuss future work.

II. AF: ARROWHEAD FRAMEWORK

AF is the result of a set of EU projects in which SOA princi-
ples have been applied to IoT and Industrial IoT applications,
respectively. As the main result of the Arrowhead projects,
the AF continued its development in an independent fashion,
and it is now being used in multiple industrial installations.
It is further developed in other projects, like for example, the
Arrowhead Tools project.

AF has what is needed to design, implement and deploy an
Arrowhead SOA-compliant system. The objective is to allow
all users to work in a common and unified framework, thus
enabling a high level of interoperability. The AF includes three
core services and systems [2], where the Orchestrator plays a
key role in defining which application services are connected
with each other, and the QoSM guaranteeing adequate levels
of QoS for each connection.

978-1-7281-5730-6/21/$31.00 ©2021 IEEE 1144

20
21

 2
2n

d
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
du

st
ria

l T
ec

hn
ol

og
y

(I
C

IT
) |

 9
78

-1
-7

28
1-

57
30

-6
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IT
46

57
3.

20
21

.9
45

36
70

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. RVAF-supported and IoT-based full-stack system architecture

Fig. 2. QoS Manager Architecture

The AF builds upon the local-cloud (LC) concept, where lo-
cal automation tasks are encapsulated and protected from out-
side interference. Application services usually communicate
with services within the LC (intra-cloud orchestration), except
when they communicate through the Gatekeeper Service with
other AF-compliant LCs (inter-cloud orchestration). Each LC
must contain, at least, the three mandatory core systems:
Registry, Authorization, and Orchestration. They allow to
establish connections between AF-application services. The
core systems are accompanied by optional supporting systems,
that further enhance the capabilities of an LC. The Event
Handler is one of these systems, capable of implementing a
producer/consumer communication pattern on an SOA logic.

III. RELATED WORK

As shown in Figure 2, the QoS Manager (QoSM) in Arrow-
head interacts with the Orchestrator and the QoS-Monitor, to
ensure that connections between application-service instances,

respect given QoS requirements. The QoSM handles infor-
mation regarding the network topology, device capabilities,
QoS requirements, etc, residing in the QoS Store (and other
databases of the AF), accessible through an SOA interface.
The management of the QoS is mainly concerned with the
reservation of communication and computational resources.
Their relevant information is maintained in a QoS Store. The
QoSM is able to determine if the requested QoS can be granted
or not, and configure the involved devices and active network
elements (e.g., router and switches), to grant a QoS request.

The elements that can be configured by the QoSM include
traffic-smoothing filters (on the output of service producers
or consumers), traffic parameters (like traffic priority), and
delivery guarantees of message-oriented middle-ware with
QoS capabilities (like DDS [3], RabbitMQ [4] or XMPP [5]).

The Alg module contains different algorithms for QoS
verification (examples will be given Section V, as Algorithms
1 and 2, respectively). The configuration of network actives
and nodes is done by the QoS Drv module. This provides the
drivers for interacting with custom or proprietary protocols.
Some applications might need to know the current status of
the system, in order to be able to adapt to changing conditions.
This is achieved by monitoring the network status with the
QoS Monitor, and informing the interested parties (e.g., ap-
plication services in charge of ensuring the robustness of the
system) through the Event Handler. A detailed description of
the QoS support in AF can be found in [6].

IV. RVAF: SYSTEM ARCHITECTURE

An IoT architecture can be split in three distinct scopes
of operation (see Figure 1): the cloud, the fog (edge), and the
swarm (sensors/actuators) [7]. Moreover, sensors and actuators
provide us with the ability to extract data from the physical
environment and to actuate upon its state. In the fog specific
tasks are performed such as data aggregation, filtering, or
real-time control. In the cloud we have ”unlimited” amount
of storage and the ability to perform large-scale computation

1145

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

within conceivable time. Development of IoT systems that
spread over multiple scopes of operation is a challenging task.
It involves several levels of development such as system or
infrastructure services; user application services; and specifi-
cation, configuration and validation services. We describe an
approach on increasing QoS of IoT systems and making them
more dependable in general by using it’s own existing infras-
tructure for continuous integration and deployment (CI/CD).
RVAF system can monitor IoT services, detect faults and
errors, ensure service stability, reduce downtime and increase
overall availability.

A. CI/CD: Continuous Integration and Deployment

Automation of system development and operation is
achieved through a continuous cycle of development, in-
tegration, and deployment (CI/CD). This cycle ensures an
automated evolution from code to full applications, and an
automated maintenance and optimization, where newly built
code is automatically integrated with the rest of the system
and deployed to a target.

If the system is malfunctioning, the target code will provide
feedback to the developer, such that potential bugs and errors
in the system are corrected. CI/CD is therefore an essential
component of distributed and heterogeneous systems, such as
a full-stack IoT-based systems. Being part of the infrastructure
that supports the development and maintenance of IoT plat-
forms and applications, CI/CD contributes to a reduction of
development time and costs, and ensures a higher reliability
and robustness of a system.

Arrowhead is an open-source project [8] and it was mainly
using a centralized development method together with custom
designed manual deployment methods implemented by the end
user. In this paper we also introduce an automated continu-
ous integration and deployment system for Arrowhead core
services that can be implemented with the CI/CD system at
the application level. It provides a novel approach to integrate
user level services with core services in a fully automated
way. This ensures that not only user level services, but also,
system level services are kept updated. As shown in Figure 3,
RVAF services are deployed through the use of containers,
such as the ones provided by the Docker Swarm or Kubernetes.
Each service is installed in a single container with all its
required dependencies. Containers are pre-built and stored
in a container-image registry, the Docker Registry, which is
maintained automatically by the continuous integration system
(CI). In the example shown in Figure 3, the CI is implemented
using the Jenkins CI tool [9]. It contains a build server for
Arrowhead core services and user level services. Each service
needs authorization certificates to join an Arrowhead local
cloud, each service needs to be configured and provide end-
point information to the rest of the system. This configura-
tion process is performed using Infrastructure as Code and
deployed by Jenkins pipelines. The actions of integration and
delivery to the Docker Registry are automatically triggered by
major version commits in Arrowhead code repository.

An RVAF continuous-deployment system (CD), connects
the images of services with their respective targets (fog nodes,
cloud virtual-machines), and deploys them accordingly. The
CD is responsible for updating the containers in case a service
changes in the Docker Registry. It allows to update services
on demand, to rollback services if necessary, or to remotely
control services or clusters of services. Container orchestration
is observing container parameters such as CPU and memory
usage, however this is not reflecting a functional health state
of a service within the container. To ensure QoS on both levels
it is necessary to observe certain parameters within the service
that could affect its ability to deliver correct functionality.

B. RM: Runtime Monitoring

A further benefit of RVAF container-based deployment, is
the ability to monitor at runtime (RM) each container, in
terms of resources or application-specific parameters. RM
is performed either on a target node, or remotely. As each
container is identified with a single service, one can single
out properties of a specific service, and monitor it individually.
RM thus allows to observe the behavior of each service, and
evaluate the health of the entire system.

In the context of RVAF-supported full-stack IoT appli-
cations, we have to consider large scale multi-dimensional
data streams, with multiple sources. To fully monitor such
distributed applications, all sub-agents need to be observed
simultaneously. As an RM infrastructure we therefore chose to
integrate the Prometheus monitoring tool [10] with the QoSM.
This combination supports real-time, RM capabilities on either
a local machine, or in the cloud. RVAF uses soft real-time
monitors wrapped around PromQL [10] queries to observe
metrics from individual containers. The data collected from
a service or container is exported into time series database,
whereof it can be aggregated, filtered or monitored raw.

These features perform run-time monitoring and run-time
verification of the individual services, metrics within the ser-
vices, containers and whole clusters. It provides an additional
and novel approach to ensure QoS in industrial IoT systems.
It increases fault-tolerance, and can even be used to ensure
resilience to attacks on an IoT system.

C. SO: Self-Optimization

The IoT applications considered are heterogeneous hard-
ware and software systems. This and the fact that they are
implemented at multiple scopes of operation, makes them very
difficult to develop, manage, and operate. Thus it is important
to design these applications with basic principles of autonomic
computing, such as, self-adaptation, self-organization, self-
configuration, self-protection, self-healing, self-description,
self-matchmaking, and self-energy supply [11].

We identify self-optimization (SO) as the most relevant
property for the QoS of IoT frameworks. SO is the ability
of a system to take corrective measures, in order to maintain
the optimal usage of constrained resources [11]. The concept
of QoS management in AF, as described in [12], detects
violations and informs the other core services about the

1146

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. RVAF container-based service deployment

violation, it is the responsibility of these core services to take
any corrective, or containment actions.

In RVAF we extend the violation detection/notification
ability, with the ability to take corrective actions, on services,
Arrowhead clouds, or target nodes in general. This ability falls
under the notion of SO, as defined in [11]. The RVAF-SO
corrective infrastructure is realized by merging the AF-QoSM
functionality, as described in [12], with the functionality
provided by the RVAF-CI/CD and RVAF-RM described in the
previous two subsections.

V. FORMALIZING THE QOS PROBLEM

A. System model

In its current form, RVAF is mostly suited for soft real-time
IoT applications consisting of a set of interconnected services
on the same local cloud and where multiple services can be
deployed on the same node. Nevertheless, its principles can
be easily extended to other scenarios and QoS properties.

As shown in Figure 4, an RVAF model considers the system
to be composed of a set of N hosts (nodes) H1, ...,HN and
a set of M services S1, ..., SM . Services are interconnected
through links lx,y , characterising the connection between
services Sx and Sy . The services Sx and Sy can be a
typical Arrowhead SOA consumer/producer services, where
each connection between a consumer or provider can have a
set of QoS requirements. The QoS requirements are part of
the formal specification of the code, and later on saved in the
QoS Store.

Each node runs a Reconfiguration module Rx, which is
mapped to the Jenkins CI tool, (see Figure 4), where x is
the index of the node. Each module Rx can be connected
to another Reconfiguration module R. The initial operation

Fig. 4. System Model Example

occurs during service setup, where the Deployment Orches-
trator module (in Figure 2) determines in which node the
service can be deployed. This initial operation is denoted
as mS50 → H3. As depicted in Figure 4, an operation
mS5H3 → H4 represents the mobility/reconfiguration of
service S5, between nodes H3 and H4, respectively. In this
case, H3 represents the source node and H4 represents the
the destination node. Link l′6,5 represents the connection that
has to be established after the mobility operation is completed
(rebinding). Consequently, connection l6,5 will have to be
safely deleted prior to l′6,5 becomes operational. By safely,
we mean that no messages should be lost or delivered to
wrong nodes. This last requirement is ensured by the full
implementation of SOA principles, where each transaction is
independent from all other transactions.

1147

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

B. QoS requirements formal definition
A formal definition of the QoS parameters for a service has

to capture functional as well as performance requirements,
such as the resources needed by the service to be deployed
(e.g., sensors/actuators, CPU power, memory). Therefore, ser-
vice requirements can be represented by the tuple:

SQoSx = {Ux, Dx, Cx, Critx,Mx} (1)

Ux is the required processor utilization when the service is
running. Note that Ux can be a set of values which apply to
different hardware platforms (nodes) where the service can be
executed. Dx is the service deadline which has a different
meaning if the service is a consumer or a producer. For
a consumer, this deadline is measured from the moment in
time when it is evoked, until it receives a response from the
producer service. For a producer service, this deadline is the
time that elapses from the moment the service if evoked by
the reception of a message from a consumer, until the time
it returns a response. Critx represents the criticality level
of the service, and Mx is the memory required by a service
to run. Many other QoS parameters can be defined for each
service, like the percentage of lost messages, communications
bandwidth, etc.

None of the parameters defined in Eq. 1 are mandatory.
The total absence of QoS parameters means that the service
is best effort. Also note that the values for these parameters
is obtained from the code specification. We also assume that
it is possible to know the status of each of the system node,
by consulting the QoS Store. The structure of the systems
is available by consulting the plant description (which is not
depicted in the figures). Each entry on the QoS Store in
Figure 2 should contain at least the following data for each
host Hx:

Hx : {LSx, LMx} (2)

LSx is a list of services with associated QoS requirements
(SQoSx). For each of these QoS requirements the QoSM
will record the last R measurements on the LMx list, which
enables, as an example, to calculate the average, maximum,
and minimum, and determine the tendency of the results. Each
entry i of LMx list is a measurement element Mexi related
with service Sx. These values are used in Algorithm 2 to
update the QoS requirements of the service on each node.

In this paper we focus only on (performance) QoS pa-
rameters like CPU utilization for the service, and memory
consumption. We also assume that each service Sx requires
a set of specialized resources in order to run, like access to
specific sensors. Here we assume that service deployment is
done with total independence from other services in a first
come first served basis. In other words, if a service cannot
be deployed to a node, then it will not be deployed into the
system. In order to help the algorithm to decide where to
deploy a service, a utility function is defined, which in this
case is only based on two parameters, the percentage of CPU
utilization (Ux) and the memory requirements (Mx):

UH
x = f(Uh

x ,M
h
x) = K1hxU

h
x +K2hxM

h
x (3)

Eq. 3 uses parameters K1hx and K2hx to quantify the relative
importance of CPU and memory utilization, respectively. The
value UH

x of the utility function is used to optimally assign a
service to a host according to its requirements and resources
needed. The pseudocode for service deployment is given in
Algorithm 1.

Algorithm 1 RVAF Optimal service deployment
Input: List H of possible hosts H in the SoS, and a service

Sx to be deployed
Output: The host H with maximum utility UH

x where Sx

should be deployed
1: L = NULL //list of hosts H matching the deployment

requirements
2: for all H ∈ H do
3: F = CI(”VerifyServiceRequirements”,H ,Sx) //are the

requirements satisfied?
4: if F == true then
5: Append(L,H) //add host H to the list L of hosts

matching Sx requirements
6: end if
7: end for
8: H = argmaxH∈L UH

x //get matching host with best utility
or NULL if L is empty

9: return H

If the service’s requirements match the host’s properties
the service can be deployed to the selected host. Service
deployment is controlled by a global container orchestrator
or a custom reconfiguration algorithm that triggers a set of
tasks in the CI/CD system for the deployment of the service
Sx to a host Hx. In the example shown in Figure 3 the Service
Deployment algorithm instructs the Jenkins CI tool to deploy
service Sx to the Host Hx, and push the new configuration to
the deployment orchestrator.

The container network on the Hx will be updated with
the addition of service Sx. The capabilities of the AF allow
services to be migrated from a host to another while main-
taining full functionality. Moreover, local AF clouds can share
services through secure connections. The deployment process
on an infrastructural scale can be regarded as a technicality.
However, service reorchestration at the application level needs
to be coordinated with the local AF orchestrator service, and
with the AF orchestrator service on the destination host Hx.
The AF is designed to allow this kind of dynamic service
orchestration [13].

C. Algorithm for run-time adaptation

The problem of deriving the correct QoS parameters, like
processor utilization and memory footprint, is very difficult in
open IoT systems, where the burden of finding out what is a
predictable behaviour for a service, prior to run-time, can have
a very high cost to the system developer, or it can even be an
impossible task. This problem is mainly due to the following
factors:

1148

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 RVAF Run-time monitoring and adaptation:
Migration Action
Input: A measurement M of the monitored parameters re-

lated to service Sx

Output: System-redesign alert or a migration mSxHa → Hb

of Sx from Ha to Hb

1: M = RM(”getMonitoringData”,Ha,Sx) //get monitoring
data for Sx from RM

2: F = QoSM(”UpdateQoSdata”,Ha,M ,Sx) //get violation
flag from the QoSM

3: if F == True then
4: RM(”QoSViolationAlert”,Ha, Sx) //publish violation

alert to RVAF services
5: H = CI(”getHostList”) //get the current list of hosts in

the system
6: Hb = Algorithm-1(H, Sx) //get the optimal host for

migration
7: if Hb != NULL then
8: CD(”migrate”,Ha,Hb,Sx) //tell CD to migrate Sx

from Ha to Hb

9: else
10: RM(”SystemRedesignAlert”,Ha,Sx) //publish

redesign alert to service Sx

11: end if
12: end if

i Different programming languages and/or algorithmic con-
structs can be employed whose behavior in time may be
hard to predict;

ii A service can be deployed on different hardware plat-
forms and this can be accomplished with different hard-
ware configurations;

iii No prior knowledge is available on how other applica-
tion/services interfere with the behaviour of the newly
developed service.

The solution in RVAF is to continuously monitor the exe-
cution data related to a particular service, in order to derive
its appropriate QoS parameters. This is of utmost importance
for services deployed on hosts, where no data is available
in advance, for the execution of the given service. A simple
solution is described in Algorithm 2. The function Update QoS
data on Hx can use a very simple algorithm, like calculating
the weighted average of the last N values, or it can use
more sophisticated algorithms, capable of detecting outliers
and filtering out the data. These solutions deserves further
investigation.

The results of Algorithm 2 can be used by the RVAF-
SO to trigger the migration of service Sx from host Ha to
host Hb. In case the service deployment fails, when executing
Algorithm 1, then a system redesign requirement is signalled
to all subscribed hosts. In this extreme case, the application
itself fails, and the overall system must return to design phase,
as described in Figure 1.

In addition to migration, RVAF is capable of using various

other actions, such that the IoT application best adapts to
various scenarios. For example: reduction or expansion of
available resources, version rollback, and service termination.
This requires an extension of the decision process of RVAF-
SO, based on the list A of available actions A. For each action
A and failure F , we assume that SO can compute a decision
weight wF

A according to the current system load:

∀A ∈ A,∀F ∈ F ,∃wF
A ∈ R (4)

Algorithm 3 shows a simple action-selection algorithm for
RVAF-SO. This algorithm is supposed to be called by Algo-
rithm 2, right after the QoS violation is detected. Algorithm 3
will then choose the optimal action for the specific failure F
of Service Sx, with ”migration” as a default option. This SO
ability in RVAF can be extended with other self-awareness
mechanisms, such as GAMS [14].

Algorithm 3 RVAF Action evaluation: Picking optimal action
Input: QoS violation alert F for measurement M of service

Sx

Output: Optimal action A for failure F

1: A = CI(”getActionList”,F) //get all available actions as-
sociated with failure F

2: return argmaxA∈A SO(”getWeight”,A,F) //return action
A with best wF

A

VI. IMPLEMENTATION RESULTS

Fig. 5. Component diagram of the implementation

1149

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

To illustrate the usefulness and versatility of RVAF, we
implemented an industrial conveyor-belt application (CBA)
with sorting capabilities. The CBA receives information from
three induction sensors located on the belt. This information is
aggregated in a fog node, in form of a sensor data aggregation
service. This can be consumed by a sorting service, located
either in the same fog node, in another fog node, or in the
cloud. The sensors tell the sorting service, whether an object
on the belt is metallic or not. If it is metallic it should be
discarded from the belt. This is achieved by the sorting service
by using a motor-driven actuator. The sensors and the actuators
are interfaced to the CBA services through a soft PLC and an
OPCUA server, both located on a fog node.

In Figure 5, we show a possible IoT-based realization of this
application, with a redundant fog node, which is capable of
replacing the main node, in case of failure, or QoS violation.
Each fog node runs a local AF system, and a number of
services, including the ones controlling the conveyor belt. The
cloud consists of four virtual machines, which are allocated
to the RVAF components as follows: CI in VM1, CD in
VM1-VM3, RM in VM4, and SO in VM3. The Jenkins
tool is used to implement the CI, the Docker Registry is
used to store service-container images, the K3S is used as
the deployment orchestrator, the SO is our reconfiguration
platform given by Algorithms 1-3, and the Prometeus tool
is used for data-logging and monitoring purposes. In order
to monitor various services concurrently, we use a set of
monitors, such as SA1-SA2 and SB1-SB2. The monitoring
code is either automatically generated from the associated
STL specifications, or written directly in PromQL. For the
fog nodes we selected the Raspberry Pi platform.

Services are deployed in a single Docker container per
service, and can be individually started, stopped, migrated or
rolled back via a deployment orchestrator. Originally we used
the Docker Swarm deployment orchestration, however due to
the application in IoT, limited resources and development state
of the tool we found K3S [15] to be much better suitable for
the given task. K3S is a lightweight version of Kubernetes
[16] designed for embedded devices and IoT. Each individual
service can be observed on the application and container level,
on top of the QoS management provided by K3S we add a
an application level QoS management in combination with
Arrowhead QoS manager.

Figure 6 shows a memory leak trace of a service in the sys-
tem given in Figure 5, and its migration to the redundant host.
It is in the nature of SOA approaches, that the development
of services is done by different individuals and organizations.
Thus, SOA approaches are error prone. However, the isolation
capabilities of container-based deployment, allows us to detect
faults and perform corrective actions with least amount of
disruption for the entire system. The legend shows several
metrics, where the last two (marked in bold) show the memory
consumption in two containers. In the considered scenario, the
memory leak in one of the services can be disruptive, and
deny other services valuable resources, for reaching required
reaction time. Mitigation by migration allows us to restart the

Fig. 6. Service migration results on memory leak

Stage Average Time (s)
From detecting fault to orchestrator alert 0.82
Terminating faulty service 0.25
Terminating container 1.91
Redeployment of the container 1.74
Service activation with full JVM stack 3.49

TABLE I
TIME OVERHEAD ON SERVICE REDEPLOYMENT

service on the other fog node, where such behaviour can be
better tolerated.

Table I shows time measurements on different stages of
the redeployment process. The response times can be further
optimized by reducing overhead from different unnecessary
functions in the used tools. As a example service we used a
consumer template provided by Arrowhead. It is implemented
in Java, hence longer startup time. This can be significantly
reduced by using optimized service implementation. In case of
migration of services from one node to the reaction times are
similar to the ones showed in the I. An additional overhead
can be created by using internal K3S scheduling mechanisms
for migration. It will try to ”save” the node if possible before
resorting to migration, this can create additional overhead on
the process. This can be also reduced by configuring K3S for
specific time limits during deployment or migration.

VII. FUTURE WORK

Various runtime monitoring tools have been developed
over time, and they use domain-specific languages, to define
individual monitors [17], [18]. These languages typically have
a formal semantics, such as the signal temporal logic (STL)
of [19]. They allow to verify during runtime, if the observed
(monitored) behavior of the system, satisfies its given specifi-
cation, standard, or regulation.

In RVAF we plan to introduce a translation system to
formally capture performance properties (e.g., CPU and
Memory usage) and functional properties in STL, query
the multi-dimensional data acquired from a variety of
sources with PromQL, and check their satisfaction. As an
example, suppose that the CPU usage of the service Sx in
an application A cannot exceed 80%. This can be formally
specified in STL, and thereafter be compiled to a runtime
monitor containing PromQL language queries, as follows:

STL:
A |= G (Sx[t] < 80)

1150

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

PromQL:

sum(rate(cont_cpu-total_sec="Sx" [1m])) /
count(node_cpu_seconds_totalmode="A")*100<80

In future work we also plan to improve AF quality of
service manager (QoSM), by fully integrating the the RVAF-
CI/CD with the AF-QoSM. We also plan to harmonize the
RVAF orchestration-service with the one of AF, within the
Arrowhead local cloud or cluster. Finally, we plan to extend the
library of actions that are made available for self optimization
to the RVAF users.

In particular, AF local clouds have an orchestration service
maintaining application level interfaces between services. This
ensures the security and stability of the whole ensemble. Main-
taining stability during RVAF adaptation, requires the harmo-
nization of RVAF-SO with AF-QoSM and AF-Orchestrator,
within the cloud. This can be performed at runtime in the
following ways:

i Directly interface AF-QoSM with the RVAF-SO. The
QoS violation alerts are sent to both simultaneously, and
they agree on a mitigation strategy. This way the AF-
QoSM is aware of any requirements violations, and is
able to communicate potential changes to the Orches-
trator. The Orchestrator updates local or remote cloud
connections to the faulty service.

ii Rely on the self-awareness of the local AF cloud and
perform mitigation actions for QoS violation, without
informing AF-QoSM and AF-Orchestrator. This way, the
consumer services are not aware of the changes, until the
service is available and reintegrated in the AF system.

iii Rebuild a static configuration of the whole cloud/cluster,
and restart the cloud with a new service configuration.

VIII. CONCLUSION

IoT applications are generally complex because they are
often both distributed and heterogeneous. Moreover, the ex-
tension of IoT infrastructures to industrial domains, with high
demands for dependability and security, requires the ability to
monitoring and ensuring a certain level of quality of service.

This can be achieved by employing modern, continuous
integration and continuous deployment tools (CI/CD), which
are nowadays an essential part of the development lifecycle of
any complex software artifact.

This paper introduced RVAF, an IoT-enabling and service-
oriented (SOA) infrastructure, combining the QoS concepts of
the Arrowhead Framework (AF), with the CI/CD deployment
tools, runtime verification/adaptation, and the computational
capabilities of cloud computing. RVAF supports the develop-
ment of IoT systems that have the ability to: i) Monitor large
scale applications in real time, ii) Verify and detect system
properties, and iii) Perform self-optimization and service-
redeployment during runtime.

ACKNOWLEDGEMENTS

This work was partially supported by the EU Horizon-
2020 project ADEPTNESS under grant number 871319, the

EU ECSEL-JU project Productive4.0 under grant number
737459, the AT BMBWF project CPS-IoT Ecosystem, the PT
FCT/MEC project within CISTER Research Unit CEC/04234,
and the PT ANI project Portugal-2020.

REFERENCES

[1] “Plattform Industrie 4.0.” [Online]. Available: https://www.plattform-
i40.de/PI40/Navigation/DE/Plattform/Hintergrund/hintergrund.html

[2] P. Varga, F. Blomstedt, L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and I. Martnez de Soria, “Making System of Systems
Interoperable The Core Components of the Arrowhead Framework,” J.
Netw. Comput. Appl., vol. 81, no. C, pp. 85–95, Mar. 2017. [Online].
Available: https://doi.org/10.1016/j.jnca.2016.08.028

[3] G. Pardo-Castellote, “OMG Data-Distribution Service: architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., May 2003, pp. 200–206, iSSN:
null.

[4] Pivotal, “Rabbitmq.” [Online]. Available: https://www.rabbitmq.com/
[5] XMPP, “XMPP.” [Online]. Available: https://xmpp.org/
[6] L. L. Ferreira, M. Albano, and J. Delsing, “Qos-as-a-service in the

local cloud,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 2016, pp. 1–8.

[7] H. Isakovic, D. Ratasich, C. Hirsch, M. Platzer, B. Wally, T. Rausch,
D. Nickovic, W. Krenn, S. Dustdar, and R. Grosu, “CPS/IoT Ecosystem:
A platform for research and education,” Oct. 2018, p. 8.

[8] M. T. Delgado, “Eclipse Arrowhead,” May 2020. [Online]. Available:
https://projects.eclipse.org/projects/iot.arrowhead

[9] Jenkins, “Jenkins.” [Online]. Available: https://jenkins.io/index.html
[10] Cloud Native Computing Foundation (CNCF), “Prometheus.” [Online].

Available: https://prometheus.io/docs/introduction/overview/
[11] S. K. Chaulya and G. M. Prasad, “Chapter 6 - Formation of Digital

Mine Using the Internet of Things,” in Sensing and Monitoring
Technologies for Mines and Hazardous Areas, S. K. Chaulya and G. M.
Prasad, Eds. Elsevier, Jan. 2016, pp. 279–350. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128031940000064

[12] M. Albano, P. Barbosa, J. Silva, R. Duarte, L. Ferreira, and J. Delsing,
“Quality of service on the arrowhead framework,” in 2017 IEEE 13th
International Workshop on Factory Communication Systems (WFCS),
May 2017, pp. 1–8, iSSN: null.

[13] J. Delsing, IoT Automation: Arrowhead Framework. Boca Raton: Taylor
& Francis Inc, Feb. 2017.

[14] S. Maksuti, M. Tauber, and J. Delsing, “Generic Autonomic Man-
agement as a Service in a SOA-based Framework for Industry 4.0,”
in IECON 2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, vol. 1, Oct. 2019, pp. 5480–5485, iSSN: 1553-572X.

[15] “K3s: Lightweight Kubernetes.” [Online]. Available: https://k3s.io/
[16] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[17] S. Jaksic, E. Bartocci, R. Grosu, and D. Nickovic, “An algebraic

framework for runtime verification,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2233–2243, November 2018.

[18] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, Specification-Based Monitoring
of Cyber-Physical Systems: A Survey on Theory, Tools and Applications.
Cham: Springer International Publishing, 2018, pp. 135–175. [Online].
Available: https://doi.org/10.1007/978-3-319-75632-5 5

[19] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds., vol. 3253.
Lecture Notes in Computer Science, 2004, pp. 152–166.

1151

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2023 at 09:19:40 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T20:58:17-0400
	Preflight Ticket Signature

