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Anomaly detection is critical to ensure the security of cyber-physical systems (CPS). However, due to the increasing complexity

of attacks and CPS themselves, anomaly detection in CPS is becoming more and more challenging. In our previous work,

we proposed a digital twin-based anomaly detection method, called ATTAIN, which takes advantage of both historical and

real-time data of CPS. However, such data vary signiicantly in terms of diiculty. Therefore, similar to human learning

processes, deep learning models (e.g., ATTAIN) can beneit from an easy-to-diicult curriculum. To this end, in this paper,

we present a novel approach, named digitaL twin-based Anomaly deTecTion wIth Curriculum lEarning (LATTICE), which

extends ATTAIN by introducing curriculum learning to optimize its learning paradigm. LATTICE attributes each sample with

a diiculty score, before being fed into a training scheduler. The training scheduler samples batches of training data based

on these diiculty scores such that learning from easy to diicult data can be performed. To evaluate LATTICE, we use ive

publicly available datasets collected from ive real-world CPS testbeds. We compare LATTICE with ATTAIN and two other

state-of-the-art anomaly detectors. Evaluation results show that LATTICE outperforms the three baselines and ATTAIN by

0.906%-2.367% in terms of the F1 score. LATTICE also, on average, reduces the training time of ATTAIN by 4.2% on the ive

datasets and is on par with the baselines in terms of detection delay time.

CCS Concepts: · Software and its engineering→Maintaining software; · Security and privacy→ Intrusion detection

systems; · Computer systems organization→ Embedded systems; Sensors and actuators; Embedded and cyber-

physical systems; · Computing methodologies → Neural networks; Supervised learning by classiication; Online

learning settings.

Additional Key Words and Phrases: cyber-physical system, digital twin, curriculum learning, deep learning, anomaly detection

1 INTRODUCTION

Cyber-physical systems (CPS) have been deployed in many applications [36]. These systems are also becoming
more complex, heterogeneous, and integrated, i.e., consisting of multiple systems to provide rich functionalities,
which expose CPS to broader threats. Such threats can cause signiicant damage to CPS. Therefore, anomaly
detection, which can potentially detect these threats in advance, is a crucial task in the domain of CPS security.

Multiple anomaly detection mechanisms for CPS have been proposed [4, 15, 18]. These traditional mechanisms
include invariant checking, physical attestation, and ingerprinting [15]. Recently, deep learning-based anomaly
detectors are intensively studied due to their success in various domains [35], such as image classiication and
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natural language processing. Typically, anomaly detectors are built as deep learning models and trained on static
data collected from a CPS. Despite the success of these neural network-based anomaly detectors, most of them
still sufer from two signiicant challenges. First, most of these models are trained on static log data and cannot
keep learning during the operation of CPS. Consequently, these models perform the best when dealing with
known attacks but sufer from low accuracy when facing novel attacks. Second, neural network-based models
rely on a large amount of labeled data for training, which is known to be expensive in CPS [18]. Comparably, a
model that can take advantage of unlabeled data is, therefore, much more desirable and appreciated in practice.
To tackle the above-mentioned challenges, in our previous work, we proposed ATTAIN [63], which takes

advantage of unlabeled data and continuously learns during the operation of a CPS, i.e., at runtime. ATTAIN
achieved new state-of-the-art results on benchmark datasets by taking advantage of both historical and real-
time data introduced in chronological order. Especially, training on live data keeps improving the predictive
performance and eiciency of the digital twin, allowing it to make more accurate and earlier predictions of
anomalies.
Recently, the latest research on Curriculum Learning (CL) demonstrates that re-organizing the training data

as a curriculum can boost the performance of deep learning models [10, 11, 27, 28, 51]. CL is inspired by a
key observation from human learning processes: humans acquire knowledge via performing a series of tasks,
usually from easy to diicult tasks. In essence, human learning is typically organized as curricula. Similarly,
machine learning algorithms can also beneit from CL. According to extensive research in this area, CL is
proven to be efective in various machine learning domains, such as computer vision and natural language
processing [10, 25, 50, 62, 70]. However, few works focus on exploring CL with time-series data from CPS, which
is inherently chronologically ordered [28]. Most existing works utilize sequential deep learning models to process
these time-series data directly, without making any changes to the order of training data [34].

In this paper, we extend ATTAIN by employing CL and form the following new contributions:

• We designed a generic framework that combines CL with ATTAIN. Next, we developed novel diiculty
measurers and adapted CL to CPS time series data. In particular, we proposed two types of diiculty
measurers: predeined and automatic diiculty measurers, which focus on the property of samples and are
based on the context of the samples, respectively.

• We conducted extensive empirical study with ive case studies, among which, as compared to ATTAIN,
two case studies are newly added. These two case studies further demonstrate the generalizability of
LATTICE over diverse datasets.

• We performed extensive analyses with statistical tests to evaluate LATTICE. We irst evaluate LATTICE
with coarse-grained and ine-grained efectiveness metrics, followed by investigating the efectiveness of
CL and its components and the eiciency of LATTICE. Moreover, we discussed the plausible reasons

for the improvement, including taking advantage of predeined diiculty measurer, automatic diiculty
measurer, and CL’s optimization strategy.

In total, we evaluate the cost-efectiveness of LATTICE on ive datasets collected from real-world critical
infrastructure testbeds: Secure Water Treatment (SWaT) [40]Ð a multi-stage water puriication plant, Water Dis-
tribution (WADI) [1]Ð a consumer distribution network, Battle of Attack Detection Algorithms (BATADAL) [53]Ð
a dataset designed for an attack detection contest, PHM challenge 2015 dataset [26] and Gas Pipeline Dataset [41].
We demonstrate that LATTICE improves the performance of the state-of-the-art anomaly detection methods by
0.906%, 2.363%, 2.712%, 2.008%, 2.367%, respectively, in terms of the F1 score. We also evaluate the time eiciency
of LATTICE with Unit Training Time (UTT) and Detection Delay Time (DDT). Experiment results show that
LATTICE improves UTT by 4.2% and DDT by 0.2% on average.
The remaining part of this paper is organized as follows: Section 2 introduces the background of CL, digital

twin, and Generative Adversarial Networks (GAN). We present related works in Section 3 a running example
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in Section 4. Section 5 introduces LATTICE in detail. Section 6 shows our empirical evaluation, followed by
Section 7 where we present the experimental results and analysis. Section 9 shows possible threats to validity
in our experiments. Section 8 provides the overall discussions. Finally, Section 10 summarizes the paper and
proposes potential future work. A replication package of the experiments is provided here 1.

2 BACKGROUND

In this paper, we combine two main techniques: CL and digital twin. We irst present a general CL framework in
Section 2.1, while in Section 2.2 we present the concept of digital twin and its components. Inside digital twin, we
use GAN as the backbone for our model. In Section 2.3, we introduce the basic structure and key functions of
GAN.

2.1 Curriculum learning

CL was irst introduced into machine learning models by Selfridge et al. [50]. In that paper, CL was used to address
the cart pole controlling task, which is a classic problem in robotics. This work later inspires many researchers to
explore CL for various tasks such as grammar learning [31, 31, 46] and language learning [6]. Bengio et el [7] irst
proposed the concept of CL in the domain of language learning. Below is the deinition of Curriculum and CL.

Definition 2.1. A curriculum is a sequence of training criteria over T training steps: � =< �1, ..., �� , ..., �� >.
Each criterion �� is a reweighting of the target training distribution � (�):

�� (�) ∝�� (�)� (�) ∀������� � ∈ �������� ��� � (1)

under the condition that the entropy of the distribution and weights, for any example, increase. Also, in the inal
steps, all examples are uniformly sampled.

With the deinition of Curriculum, Bengio et el. [7] deined CL as follows.

Definition 2.2. Curriculum learning is a training strategy that trains a machine learning model with a curriculum
deined above.

Most of the studies on CL follow this concept [7, 27, 44, 59]. Wang et. al. [58] summarized these works and
proposed a general framework of CL as "Diiculty Measurer + Training Scheduler". The diiculty measurer
decides the relative "easiness" of each data sample, while the training scheduler decides the sequence of data
subsets throughout the training process, based on the judgment of the diiculty measurer. In this paper, we follow
this framework and deine our own diiculty measurer and training scheduler.

2.2 Digital Twin

El Saddik [13] deined the concept of Digital Twin as ła digital replica of a living or non-living physical entityž. In
this paper, we focus on building a digital twin of a CPS. Fig 1 shows a high-level view of a digital twin for a CPS
in operation, which is referred to as a physical twin - a commonly used term in the literature [15, 66, 67]. The
data from the physical twin is continuously fed to the digital twin. Depending on the CPS, such data may come
from its environment, communication medium, and the CPS itself. A digital twin may also be able to take action
on the physical twin. Examples of such action include preventing unsafe situations or alerting a CPS operator
about abnormal behaviors.
As shown in Fig 1, a digital twin consists of two parts: the digital twin model (DTM) and the digital twin

capability (DTC). The DTM refers to the digital representation of the CPS. This representation could be in the form
of heterogeneous models corresponding to diferent components such as software, hardware, and communication.

1https://github.com/xuqinghua-China/tosem/tree/master
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We treat these components as black boxes and build the DTM with a data-driven approach. These models can be
represented as state machines, machine learning models, etc. The DTC refers to the functionality of a digital twin.
Depending on the context, a digital twin can provide various functionalities, such as predictions of non-functional
properties, uncertainty detection, and failure prevention. In our context, we focus on the anomaly detection
capability that detects abnormal patterns exhibited by sensors and actuators and usually caused by external
attacks. Moreover, the DTC interacts with the DTM, e.g., to perform simulations on it. Similarly, the DTM interacts
with the DTC, e.g., to get feedback about whether or not the system is under attack. This bidirectional relationship
is shown as a dashed line between the DTC and the DTM in Fig 1.

Traditionally, digital twins are constructed statically with historical data only [13]. However, in some instances,
we may have CPS design models that could be used and improved incrementally during the operation of the
digital twin based on live data, thereby representing the most up-to-date state of the underlying CPS. In particular,
as discussed in our previous work ATTAIN [63], such live data improves both predictive performance and the
eiciency of the digital twin. Better predictive performance indicates that the digital twin can make more accurate
anomaly predictions, while better eiciency indicates that it takes less time for a digital twin to detect an anomaly.

In this paper, we build the DTM as a timed automaton machine, and the backbone of the DTC is GAN. The
DTM provides ground truth labels to improve the anomaly detection capability of LATTICE. As for training, we
train such models initially with historical data, followed by their continuous improvement with live data.

Fig. 1. Digital Twin for Cyber-Physical System

2.3 Generative Adversarial Networks

As mentioned in Section 2.2, we utilize GAN as the backbone of DTC. GAN was invented by Ian Goodfellow
in [19] and has been successful in performing many data generation tasks [24] e.g., image generation [5] and text
generation [71]. These successful applications demonstrate GAN’s generalizability and inspire us to adapt it to
the CPS security domain.

A typical GAN has independent models: generator (�) and discriminator (�) (see the GAN structure in Figure
2). Considering an input noise variable �, the goal of � is to generate a new adversarial sample� (�) that comes
from the same distribution as of �. On the other hand, the discriminator model (�) returns the probability � (�)

assessing whether the given sample � is from the real data set or generated by � . The ultimate goal of � is to
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maximize the probability that � would mistakenly predict generated data as a real one, and the goal of � is
the opposite. Thus, � learns to generate more realistic adversarial samples while � continuously improves its
capability of distinguishing them from real samples.

Fig. 2. Generative Adversarial Network Structure

3 RELATED WORK

In Section 3.1, we present related works about CPS anomaly detection. In Section 3.2, we present the research
progress of CL and how to incorporate CL and digital twin.

3.1 CPS Anomaly Detection

3.1.1 Traditional Anomaly detection. Anomaly detection is a popular research topic in the domain of CPS security.
Many traditional anomaly detection methods attempt to learn normal states of CPS with predeined rules(e.g.,
frequency limit), state estimation (e.g., the Kalman ilter), and statistical models (e.g., Gaussian model, histogram-
based model) [36]. However, a disadvantage of these methods is the requirement for domain knowledge or data
distribution of normal data. On the other hand, machine learning approaches have proved successful in various
domains by leveraging data instead of domain knowledge to improve performance. Following this research line,
our method adapts machine learning techniques to the CPS domain.

3.1.2 Deep Learning-based Anomaly Detection. Deep learning-based anomaly detection methods have been
proposed to identify anomalies in CPS by exploring various neural network architectures to detect attacks in
diferent CPS domains [36]. Jonathan et al. [18] introduced Long Short TermMemory Networks (LSTM) to capture
temporal characteristics of time series data. LSTM was used as a predictor to model the normal behavior of the
CPS, and subsequently, CUSUM was used to identify abnormal behaviors. Several approaches (e.g., [8, 30, 65])
adopt a convolutional layer as the irst layer of a neural network to obtain correlations of multiple sensors in a
sliding time window. Further, extracted features are fed to subsequent layers to generate output scores. Canizo et
al. [8] and Wu et al. [61] used Recurrent Neural Network (RNN) to take the output of the Convolutional Neural
Network (CNN) layer and form the prediction layer. Moreover, both methods used datasets from real industrial
plants and applied precision, recall, F1, and ROC as the evaluation metrics. Such methods prove the efectiveness
of deep learning techniques in various domains. We follow this research line and use LSTM to capture temporal
characteristics of CPS data while utilizing Graph Convolution Network (GCN) instead of CNN to capture their
spatial characteristics better. However, deep learning methods work best when trained on large amounts of
labeled data, which can be costly to acquire in the CPS domain. Therefore, we take advantage of a digital twin for
data augmentation.

3.1.3 Digital Twin-based Anomaly Detection. A few papers have proposed to use digital twins for anomaly
detection. Eckhart & Ekelhart [13] built a knowledge-based intrusion detection system with digital twins, which
is based on the assumption that a CPS would exhibit certain unusual behavior patterns during an attack. To
this end, they proposed rules that the system must adhere to under normal conditions. Given these rules, they
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built a simple digital twin, which continuously checks rule violations at runtime. This method achieved a low
false-positive rate in anomaly detection tasks. However, these rules need to be predeined and do not evolve or
get updated when additional real-time data is available from operating systems as LATTICE does. The reason is
that their digital twin is simply a static representation of a real system, implying that the digital twin does not
evolve/learn when new data are available.

Later on, Eckhart & Ekelhart [14] further improved their digital twin by introducing a passive state replication
approach to simulate real systems with real-time data. To demonstrate the viability of the proposed digital
twin, Eckhart & Ekelhart (2018b) implemented a behavior-speciication-based intrusion detection system. They
evaluated the efectiveness by launching a man-in-the-middle, and an insider attack against a real CPS [15].
Evaluation results show that the proposed anomaly detector yields a low false-positive rate while being capable of
detecting unknown attacks. In their work, the speciication of a CPS is used to automatically build the digital twin
model, which is a Finite State Machine (FSM). FSM does not consider time constraints for transitions as Timed
Automaton does, making it diicult to replicate a CPS with delayed transitions. Also, their intrusion detector
depends on the digital twin model to simulate the correct behavior of a CPS. When a mismatch between a state
of the digital twin model and the corresponding state of the real operating CPS occurs, the CPS is considered to
be under attack. However, mismatches are determined by predeined rules, which cannot detect complicated
attack patterns, such as attacks with delayed efects and attacks targeting multiple access points simultaneously.
LATTICE, however, mitigates this challenge by using Timed Automaton as the digital twin model and GCN as
the GAN generator to capture temporal characteristics.

3.2 Curriculum Learning

Based on the framework proposed in [58], existing CL methods can be divided into predeined CL and automatic
CL.

In predeined CL, the diiculty measurer and training scheduler are completely designed based on prior human
knowledge without any data-driven models or algorithms involved. The diiculty measurers of a predeined
CL need to be manually designed based on characteristics of speciic data. Since CL was originally designed
for computer vision and natural language processing tasks, most predeined diiculty measurers are related to
images or text data, such as complexity [44, 59], diversity [6, 27], and noise estimation [9, 10]. Unlike predeined
diiculty measurers, predeined training schedulers are usually task/data agnostic. In general, predeined training
schedulers can be divided into two types: discrete and continuous training schedulers. The most popular discrete
scheduler is called Baby Step [7]. The Baby Step algorithm irst divides data into multiple buckets based on the
diiculty score of each sample. The training process starts with the easiest bucket and slowly includes harder
buckets after several training epochs. Other discrete schedulers, including One-Pass [7] and modiied Baby
Step [27], are also widely adopted due to their demonstrated simplicity and efectiveness.

Despite its success, predeined CL is limited to domain knowledge and prior information requirements, which
might not be accessible in certain application contexts. Also, predeined CL stays ixed during training, is incapable
of adapting to potential novel scenarios during operation. Therefore, automatic CL has attracted much attention
recently. Self-paced Learning (SPL) [32, 56] is a primary branch of automatic CL. The intuition behind SPL
originates from human learning, where a student teaches her/himself, and controls the content, method, time,
and length of the study. For instance, Kumar et al. [32] proposed an SPL approach that trains the model at each
iteration with the easiest subset based on the model’s current performance, i.e., the examples with the lowest
training losses. Another type of automatic CL is Transfer Teacher (TT) [21, 60, 62]. Unlike SPL, which depends
on the student to teach itself, TT takes another pre-trained model as the teacher and transfers "knowledge" to
the student model. SPL has a risk of uncertainty at the beginning of training if the student model is not mature
enough to teach itself, while TT reduces this risk by inviting a mature teacher to help the student model for
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assessment. We follow this research line and use DTM as the teacher model and DTC as the student model,
allowing LATTICE to adapt its curricula automatically and continuously.

4 RUNNING EXAMPLE FROM THE SWAT TESTBED

To better illustrate our method, we present a running example in Table 1. In this table, we use sensor and actuator
data from the irst stage of the SWaT testbed. In this testbed, sensors include a low indicator transmitter (FIT101)
and level indicator transmitter (LIT101), while actuators consist of pumps (P101, P102) and a moving valve
(MV101). Sensor values are continuous, and actuator values are discrete (0 for opening; 1 for opened; 2 for closed).
Formally, we use � to denote an observation at a time point, consisting of sensor and actuator values, as shown
in equation 2:

� = [��1, ��2, ��3, ...��1, ��2, ��3, ...], (2)

where�� � represents a value for the �
�ℎ sensor and��� represents the value for the �

�ℎ actuator. We deine�� ∈ ��

to be the system state at the ��ℎ time point, and� � to be the sequence of states before the ��ℎ time point.

Table 1. Running Example

Timestamp FIT101 LIT101 MV101 P101 P102 Label Diiculty # of Batch

10:00:00 2.43 522.84 2 2 1 Normal 0.1 1

10:00:01 2.45 522.88 2 2 1 Normal 0.1 1

... ... ... ... ... ... ... ... ...

10:29:13 2.44 816.84 2 1 1 Normal 0.4 23

10:29:14 2.49 817.67 23 1 1 Attack 0.5 23

10:29:15 2.54 817.94 23 1 1 Attack 0.5 23

... ... ... ... ... ... ... ... ...

10:44:53 6e-4 869.72 1 2 1 Attack 0.4 22

An attack against MV101 is also shown in this table. The system starts at 10:00:00, pumping water from outside
into the tank. As the water level (LIT101) in the tank grows above the upper limit, MV101 should be closed
to prevent a water overlow. However, an attacker forces MV101 to be opened regardless of the readings from
LIT101. This attack starts at 10:29:14 and ends at 10:44:53, causing real water overlow damage to the plant. Our
objective is to detect such attacks in advance before they cause actual damages, with the help of� � . We aim to
make both coarse-grained and ine-grained predictions. For coarse-grain predictions, we calculate the number of
attacks detected. For ine-grained predictions, we predict the labels for each data sample. For instance, we want
to predict the label column shown in Table 1 for each given time step.

We also show the assigned diiculty score and batch number for CL. Both of them are calculated with LATTICE,
which we will introduce in detail in Section 5. Intuitively, we deine diiculty score to be a number between
0.0 and 1.0, indicating the level of diiculty this sample presents. To be more speciic, the higher the diiculty
score is, the more diicult this sample is. We assign a new batch number for each sample and change the order
based on these scores. Formally, we use �� and �� to denote the diiculty score and batch number for sample � .
For instance, the irst sample in Table 1 has a diiculty score of 0.1 (�1 = 0.1) and its batch number is 1 (�1 = 1).
This means that the irst sample is relatively easy for the model to learn, and it will be included in the irst batch
of the training dataset. In this work, we aim to predict the label column at each time point.

5 APPROACH

LATTICE follows the general CL framework proposed in [58]. As we discussed in Section 2, the main idea of CL
is about training models from easier data to harder data. Therefore, a general CL design consists of diiculty
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measurer and training scheduler. Diiculty measurer decides the relative "diiculty" of each sample, while training
scheduler arranges the sequence of data subsets throughout the training process based on the judgment of
diiculty measurer. As shown in Figure 3, all the training examples are sorted by the diiculty measurer from
the easiest to the hardest and passed to the Training Scheduler. Then, at each training epoch � , the training
scheduler samples a batch of training data from the relatively easier examples and sends it to the ATTAIN for
training. With progressing training epochs, the Training Scheduler decides when to sample from harder data.
As shown in the running example (Table 1), the Diiculty column presents the diiculty scores given by the
diiculty measurer, indicating the relative "diiculty" of each sample. For instance, the sample data at 10:00:00 is
assigned a diiculty score of 0.9, i.e, ����� (�10:00:00) = 0.9, while the diiculty score of the sample at 10:29:12 is
0.5, i.e, ����� (�10:29:12) = 0.5. This tells that sample �10:00:00 is relatively harder for the model to learn. With these
diiculty scores, the training scheduler decides which samples should be included in each batch. The general
principle is that easy samples should be included irst. After calculation, the training scheduler assigns new batch
numbers for �10:00:00 (batch number=23) and �10:19:12 (batch number=2). In the following section, we will present
more details about the diiculty measurer, training scheduler and the extension to ATTAIN in Section 5.1, Section
5.2, and Section 5.3, respectively.

Fig. 3. Overview of LATTICE

5.1 Dificulty Measurer

Wang et al. [58] pointed out that it is diicult to ind the best combination of diiculty scorer and training
scheduler for a speciic task except for performing an exhaustive search, which is often impossible to do for a
complex problem. Thus, we did not perform an exhaustive search. However, we investigated various options
of diiculty scorers and selected the best-performed ones. Particularly, we use two diferent types of diiculty
measurers, namely predeined and automatic diiculty measurers. Predeined diiculty measurers are designed
based on human prior knowledge with no data-driven models or algorithms involved, while automatic diiculty
measures are learned by data-driven models or algorithms. Predeined diiculty measurers have been proven to
be efective in various tasks and have been popularly used in multiple domains due to their simplicity [58] (also
see Section 3.2). However, automatic diiculty measurers require less expert knowledge and can interact with
current models to adapt to new data.

5.1.1 Predefined Dificulty Measurer. Predeined diiculty measurers are usually designed with the help of domain
knowledge. Researchers have manually designed various diiculty measurers based on data characteristics of
speciic tasks [16, 43, 45, 52, 54]. We adapt these works to CPS data and propose our own predeined diiculty
measurers ���� . As shown in Equation 3, ���� is calculated with four diferent types of domain knowledge:
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complexity (����� ), diversity (����), noise (���� ), and system vulnerability (���� ). Each of them is normalized and
then all are summed.

���� = ��������� (����� ) + ��������� (����) + ��������� (���� ) + ��������� (���� ) (3)

Complexity stands for the structural complexity of data samples, such as the dimension and input space of
data. Most of the time, the number of sensors and actuators remains unchanged during the operation of CPS,
while attackers can potentially change sensor and actuator values into new ones. This increases the input size of
data samples, which subsequently increases the complexity. Therefore, we calculate the complexity of each data
sample as in Equation 32

����� = ���� (������� ��� ��������� ����� �����) (4)

Diversity stands for the distributional diversity of data samples. A data sample is considered to increase the
diversity of the dataset if the frequency of this data sample is low. A higher diversity potentially indicates that data
samples are distributed in more types. In this paper, the diversity diiculty measurer adopts the naive Bayesian
assumption and calculates the probability of this data sample as in Equation 5. Under this assumption, we consider
actuators to be independent of each other and use frequency to estimate this probability. The probability of this
data sample is factorized as the product of the frequency of each actuator value.

���� =

�∏

�=0

� �������� (�� ) (5)

Noise is about the noise level of data samples. A data sample tends to be noisy if its value deviates from the
context. The noise diiculty measurer calculates this deviation as the standard scor, as shown in Equation 6,
where �and � denote the expected value and standard deviation of data samples from the context.

���� =
�� − ��

�
(6)

Vulnerability determines how vulnerable the system is to attacks. We deine vulnerability as the distance to a
known attack since attackers tend to invade the system when it is vulnerable and we hypothesize that samples
around time points of attacks are more vulnerable to attacks. Consequently, samples with higher vulnerability
should be assigned higher diiculty scores because of the increased complexity, diversity, and noise. We argue
that all these three characteristics increase when attacks happen or are about to happen, as explained below:

• Complexity. Typically during attacks, values of sensors and actuators become unstable and often deviate
from normal ranges. This increases the input space while the input dimension remains the same (the sum
of sensors and actuators). We assume that samples with larger input space are more complicated to be
trained on.

• Diversity. This increase comes from new data patterns introduced by attackers, which tend to manipulate
the values of actuators and sensors for their intended purposes. Such a manipulation inevitably increases
the diversity of data, thereby increasing the diiculty of model training on this data.

• Noise. Given that our approach relies on DTM to give ground truth labels of real-time data, the conidence
level of this labeling process is lowered when attacks happen. In other words, labels given by DTM become
noisy. Many deep learning models can be induced to it these noisy label distributions instead of real data
distribution. Subsequently, these models tend to make inaccurate predictions around time points of attacks,
hence the high diiculty score.

In the context of our running example in Section 4, an attack was introduced at 10:29:14, which implies that
the complexity, diversity, and noise of samples around 10 : 29 : 14 tend to increase. As a result, samples around
�10:19:14 are hard to be trained on and hence obtain high diiculty scores.

ACM Trans. Softw. Eng. Methodol.
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We formally deine a distance-based vulnerability diiculty measurer ���� based on the above-discussed
hypothesis as shown in Equation 7: ���� is the time distance �� between current sample �� and closest attack
sample �� . As in the running example, the closest attack to sample �10:00:00 is �10:29:14. Therefore, ���� is calculated
as �� = |������������ (�10:29:14 −�10:00:00) |. To enable calculations with other diiculty measures in the future, we
further scale it to be within 0 and 1 with the min-max normalizer as in Equation 8, where��� and��� denote
the minimum and maximum values of time distance in the training samples, respectively. Finally, we use this
scaled distance as diiculty score ��

���
for sample �� as in Equation 8:

�� = |������������ (�� − �� ) | (7)

���� =
�� −���

��� −���
(8)

Noticeably, the ������������ function should be carefully designed to preserve temporal characteristics of
anomaly detection data, which is usually in the form of sequences. To that end, we use a sliding window
mechanism for this function. In particular, we deine hyperparameter ������� to denote the size of this sliding
window, within which samples share the same distance. Let ��� and �

�
� to be the original time distances for sample

�� and sample �� . We calculate the window distance for any given sample as in Equation 9:

������������ (�� ) = � ���� (
��� − �

�
�

�������
) (9)

5.1.2 Automatic Dificulty Measurer. Despite the simplicity and efectiveness of predeined diiculty measurers,
they have some essential limitations [58]. First, a predeined diiculty measurer remains unchanged during
runtime, i.e., being unable to adapt to new data generated from CPS in operation. Second, a predeined diiculty
measurer requires a good grasp of domain knowledge, which can be quite expensive and time-consuming in
practice. Last but not least, the deinition of diiculty for humans and machines can be quite diferent; what
humans assume to be easy can be quite diicult for machines to comprehend. This discrepancy of decision
boundaries between humans and machines causes challenges for experts to deine diiculty scores manually.
To alleviate these problems, various automatic diiculty measurers have been developed and explored in

the literature, including self-paced learning [32], transfer teacher [70], reinforcement learning teacher [20],
and other automatic diiculty measurers [25, 47, 55]. Inspired by these methods, we modify diiculty scores
automatically with prediction errors, which are critical indicators of CPS uncertainty. Substantial work has
been conducted in the literature, demonstrating the importance of handling uncertainties in CPS security and
safety [22, 23, 38, 64, 68, 69]. In our context, we focus on prediction errors of DTM, which is pretrained on
historical data. DTM in ATTAIN simulates corresponding CPS with high realism. Therefore, higher prediction
errors of DTM indicate higher noise levels of labels produced by DTM. As mentioned in Section 5.1.1, training
deep learning models with noisy data is more diicult. Therefore, we assume samples with higher prediction
errors should be assigned with higher diiculty scores. Based on this assumption, we deine the following two
types of automatic diiculty measurers: Hamming Distance-based Measurer (HDM, Deinition 5.1) and Cross
Entropy-based Measurer (CEM, Deinition 5.2). Hamming distance is commonly used to calculate the diference
of two strings of equal length, while cross-entropy loss estimates uncertainty by comparing real distribution and
prediction. We are aware that there are other distance-based and entropy-based metrics, we, however, argue that
hamming distance and cross-entropy are commonly used and representative. In the future, we will explore other
options.

Definition 5.1. HDM.
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Let �̂��� be the predicted state for the current time point. We deine HDM score ���� as in equation 10:

����� =

∑�
�=1 �̂

�
�
+ ��

�

�
(10)

where �̂�
�
denotes the �th element of predicted state vector at time point � . As in the running example, �10:00:003 denotes

the third element of sample �10:00:00, which is the value of MV101 (2).

Definition 5.2. CEM.
We deine CEM score ���� as in equation 11:

����� = −

�︁

�=1

�� � ���� (�)�� × ���(�� � ���� (�̂)
�
� ) (11)

5.1.3 Combined Dificulty Measurer. As previously mentioned in Section 5.1.1 and Section 5.1.2, predeined and
automatic diiculty measurers have both advantages and disadvantages. Predeined diiculty measurers can
incorporate expert knowledge into learning processes, but it is costly in practice. On the other hand, automatic
diiculty measurers can self-adjust during training, which saves considerable time and cost. However, automatic
diiculty measurers depend only on training losses and prediction errors acquired from data and discard expert
knowledge. Therefore, we propose to combine these two paradigms by introducing prior expert knowledge into
the automatic learning process.

We deine a hyperparameter � (0 < � < 1) to control the inluence level of the predeined diiculty measurer
(prior knowledge). The combined measurer is deined as in equation 12 and equation 13:

����1 = �
�
��� + ������ (12)

����2 = �
�
��� + ������ (13)

5.2 Training Scheduler

As for the training scheduler, we also explored several options including baby steps [44], one pass [44], and root
function continuous scheduler [10]. However, we investigated the performance of these training schedulers.
Results from this investigation show the superiority of the combination of the proposed diiculty scorer and baby
step training scheduler. Baby step scheduler irst distributes the sorted data into buckets from easy to hard and
starts training with the easiest bucket. After a ixed number of training epochs or convergence, the next bucket is
merged into the training subset. Finally, after all the buckets are merged and used, the whole training process
either stops or continues with several extra epochs. Note that at each epoch, the scheduler usually shules both
the current buckets and the data in each bucket and then samples mini-batches for training (instead of using all
data at once).

5.3 ATTAIN Extension

In addition to implementing CL, we also extended ATTAIN by introducing gated GCN. The top part of Fig. 4
shows the overview of ATTAIN. Two types of data need to be collected before training: sensor and actuator
values. Data is acquired both from the past, (i.e., Historical Data) and in real-time (i.e., Real-time Data) from an
operational CPS.

Learning digital twin models is a standard state prediction process based on historical and real-time data. It is
initially learned as a timed automaton machine from the historical data statically. Though this pre-trained digital
twin model tends to simulate the real CPS with high realism, it is limited to capturing only known behaviors.
Therefore, this model needs to be further improved with real-time data, allowing it to evolve along with its
physical counterpart at runtime. Both the pre-training and online training processes utilize the OTALA [39]
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Algorithm 1: Baby Step Training Scheduler

Input: � : training dataset; �: the diiculty measurer
Output:�∗: the optimal model.

1 � ′
= ���� (�,�);

2 �1, �2, ..., ��
= � ′�ℎ��� � (��) < � (��), �� ∈ �� , �� ∈ � � ,∀� < � ;

3 ������
= ∅;

4 for s=1...k do

5 ������
= ������ ∪ �� ;

6 while not converged for p epochs do
7 �����(�,������)

8 end

9 end

Fig. 4. Details of ATTAIN Extension

algorithm, a multi-stage algorithm with the following steps: pre-processing, preix detection, and state merging.
We extend this algorithm to learn probabilistic real-time automaton.

In this case, the DTC, i.e., the anomaly detector, is trained only on real-time data, where GAN is used as
the backbone framework. GAN consists of a generator and a discriminator. The generator learns to generate
adversarial samples, mapping from a latent space to input data distribution. The discriminator learns to distinguish
among real attack, real normal, adversarial normal, and adversarial attack samples. The anomaly detector is
trained in a supervised learning fashion, yet unlabeled adversarial samples are also utilized. To that end, our
method calculates a ground truth label as training signals by comparing real sensor and actuator values and
predicted values generated by the digital twin model. This ground truth label is then used for the cross entropy
loss calculation. Backpropagation is applied in both the generator and discriminator such that the generator
produces better adversarial samples while the discriminator becomes more skilled at lagging samples from
diferent categories.
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5.3.1 Digital Twin Model Generation. A digital twin model is often a behavioral model. Such a model is usually
represented as a state chart or a inite automaton and is mostly created manually by domain experts [37, 49].
However, there exist approaches on the automated construction of Deterministic Finite automaton such as the
ones reported in [2, 39]. Along with this line, we propose to use Timed Automaton to represent our automatically
generated digital twin model. In the automaton theory, a timed automaton is a inite automaton extended with a
inite set of real-valued clocks, which can better model real-time systems.

A Timed Automaton is a tuple � = (� ,� , �), where,

• � is a inite set of states. In our context, each state � ⊆ � is deined as an observation in a time point,
which is a vector consisting of sensor values and actuator values � = [��1, ��2, ��3, ...��1, ��2, ��3, ...];

• � is a inite set of transitions, where � ⊆ � ×� . For example, for a transition < �,�′ >, �,�′ ∈ � are the
source and destination states; and

• � is a transition timing constraint � : � −→ � , where � is a set of probability distribution functions with
regard to time, which denotes how much time is needed for a certain transition.

We use OTALA as a learning algorithm, which was introduced by Maier et. al. [39] as a generic algorithm.
We further extend it for our purpose. According to Maier’s deinition, a transition is triggered by events and
inished when the timing constraint clock runs up. However, in the case of CPS, events are not observable and
transitions are not deterministic. Therefore, we extend OTALA by dropping the concept of events and introducing
probability distribution functions as time constraints. In our example (Table 1), the state vector at 10:00:00 is
�0 = [2.43, 522.84, 2, 2, 1]. And at 10:00:01, we observe a new state �1 = [2.45, 522.88, 2, 2, 1] which has not been
observed before. Therefore we add �1 into the states set� and add one transition from �0 to �1 into the transition
set � . Then the algorithm continues to take another input at the next second.

5.3.2 Digital Twin Capability. The core part of Digital Twin Capability is a Generative Adversarial Network
(GAN). GAN’s capability of producing adversarial samples signiicantly increases the volume of training data. It
consists of two independent models: generator (�) and discriminator (�). � learns to generate more realistic
samples while � continuously improves its capability of distinguishing adversarial samples from real samples (as
also discussed in Section 2.3). Here we modify this vanilla GAN for our purpose. We calculate a ground truth
label with the help of the digital twin model and denote each sample with more ine-grained labels: real normal,
real attack, adversarial normal, and adversarial attack. In this case, the discriminator is a 4-category classiier,
which is trained with much more data compared to most existing anomaly detectors.

In this paper, we extend ATTAIN by replacing GCN in the generator with Gated GCN, while the discriminator
stays unchanged. Gating mechanisms have been efective in RNNs such as Gated recurrent units and LSTM. Gating
mechanisms have been proven to be efective in itting more complicated data. They control the information low
through their recurrent cells. In the case of GCN, these gated units control the domain information that lows
to pooling layers. The model must be robust to change in domain knowledge and should be able to generalize
well across diferent domains. For instance, in our example (Table 1), LIT101, FIT101, and P101 are connected.
ATTAIN requires domain knowledge of SWaT to acknowledge this connection, while LATTICE can learn this
during training automatically. In the following part of this section, we elaborate on the structure of the generator.

As described in the running example, let � [�] be the �th sensor or actuator values of the system. We consider
values within a predeined time window as input, e.g., � [�], � [� − 1], ..., � [� − ������_����]. To get a spatial
representation ������� [�] for each time step, irst, the input is fed into a multi-layer network, consisting of an Input
Layer, a GCN Layer, and a Pooling Layer. Second, the spatial representation of all time steps within the window
is fed into an LSTM module to learn temporal characteristics. The inal output of the generator is adversarial
samples � ��� [�] containing both temporal and spatial characteristics.
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• Input Layer. Let � [�] be the raw input values in the �th time point, consisting of actuator values �[�] and
sensor values � [�], which are discrete values and continuous values, respectively. For discrete values, we
encode them into one-hot vectors as shown in Equation 14, while for continuous values, we expand them
to 3-dimensional vectors, adding their upper limits and lower limits as two additional dimensions as shown
in Equation 15. � [�] is made up by concatenating �[�] and � [�] as in equation 16:

�′ [�] = ������ (�[�]) (14)

�′ [�] = ������ (� [�], �����_�����, �����_�����) (15)

�′ [�] = ������ (�′ [�], �′ [�]) (16)

• GCN Layer. GCN Layer captures interdependent relationships among sensors and actuators. In ATTAIN,
GCN takes a speciication graph as well as sensor and actuator values as the input. In this graph, each
actuator and sensor is viewed as a node, while an edge is drawn when there is a connection between these
two nodes according to the CPS process. However, speciication graphs are not always available, which
motivates us to extend GCN with Gated GCN to learn graph edges automatically. As shown in the running
example, we ind the connection between MV101, P101, LIT101, and FIT101 in the speciication graph.
Therefore the corresponding edge weight of these four nodes will be set as 1 in ATTAIN, while other edges
such as edges between P101 and P102 will be set as 0. However, in LATTICE, the weight matrix will be
initialized randomly at the beginning and updated during training. We formally deine this gated GCN
Layer as follows.
Let � [�] be the graph edge weight matrix at time point � . We irst calculate a new candidate matrix �� [�] as
in equation 17, where�� and �� are weight and bias matrices, respectively.

�� [�] = ���ℎ(� [�]�� + �� ) (17)

We then calculate the control matrix �� as in equation 18:

�� [�] = ������� (� [�]�� + ��) (18)

Finally, we update edge matrix � for the current time point as in equation: 19

� = �� [�] × �� [�] (19)

Consequently, we have an updated graph � as in equation 20. Gated GCN takes graph � and vector �′ [�] as
input as shown in equation 21:

� = (�,� ) (20)

������ [�] = �������� (�,�′ [�]) (21)

• Pooling Layer. In the pooling layer, all the GCN outputs collapse into one vector, as shown in equation 22
below:

������� [�] =����������(������ ) (22)

where ������� [�] is the spatial representation vector of timestep � .
• LSTM Layer. In the LSTM Layer, spatial representations from diferent time steps are concatenated together
as input, as shown in Equation 23. LSTM learns temporal features by calculating hidden states between
each time step as in Equation 24. The last hidden state ℎ[�] is used as our inal representation � ��� [�] for
time step � as shown in equation 25:

������ = ������ (������� [� : � −������_����]) (23)

ℎ[�] = ���� (������) (24)

� ��� [�] = ℎ[�] (25)
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6 EXPERIMENT DESIGN AND EXECUTION

Section 6.1 presents the research questions (RQs) that we would like to answer. Section 6.2 presents the case
studies we used for experimentation, followed by the evaluation metrics (Section 6.3). Section 6.4 provides
parameter settings of the experiments, and Section 6.5 details the experiment execution process.

6.1 Research uestions

In our experiment, we are interested in answering the following four RQs:

• RQ1: How efective is our anomaly detector as compared to ATTAIN and the other two baselines from the
literature?

• RQ2: How efective is it for introducing CL in DTC?
• RQ3: Is LATTICE on par with the baselines in terms of required training time?
• RQ4: Is LATTICE on par with the baselines in terms of detection delay time?

With RQ1, we aim to compare the efectiveness of our approach with existing approaches from the literature
(baselines). RQ2 focuses on evaluating the improvement brought by CL when it comes to DTC. In addition, we
perform an ablation study to check the efectiveness of each diiculty measurer inside CL. RQ3 is designed to
demonstrate the eiciency of LATTICE in terms of training time, whereas RQ4 attempts to show how quickly
LATTICE can detect an anomaly.

6.2 Characteristics of the Datasets

We evaluate LATTICE with ive CPS datasets, namely Secure Water Treatment (SWaT) [40], Water Distribution
(WADI) [1], Battle Of The Attack Detection Algorithms (BATADAL) [53], PHM challenge 2015 dataset [26] and
Gas Pipeline Dataset [41]. Table 2 provides key characteristics of these datasets.

Table 2. Characteristics of the Datasets. ������� , ���������� , ������_������ , �����_������ and �̄������_��� denote the number

of sensors, number of actuators, number of atacks in the training dataset, number of atacks in the test dataset, and the

average length of atacks, respectively. The total number of samples is � .

Dataset ������� ���������� ������_������ �����_������ �̄������_��� �

SWaT 25 26 33 8 109 946722

WADI 42 61 12 3 665 1221372

BATADAL 26 17 5 2 70 12936

PHM 2015 4 - 16 4 9284-292064 2322-73016 2 79916-1152651

Gas Pipeline 16 7 51011 12753 4 236179

SWaT is a CPS testbed for water treatment. Its main functionality is about producing iltered water through a
series of stages. The testbed consists of 25 sensors and 26 actuators. The SWaT dataset was produced from the
testbed during its operation. There are 41 attacks in total. We split these 41 attacks into training (33) and testing
(8) datasets. The average length of an attack, i.e., the number of samples in the attack, is 109 in this dataset.

The second case study is the WADI data produced from the WADI testbed ś an extension to the SWaT testbed.
The main functionality of the WADI testbed is the secure distribution of water. The dataset generated from the
WADI testbed has two weeks’ normal operation data, whereas it has two days’ attack data. This testbed consists
of 42 sensors and 61 actuators. There are 15 attacks in total. We split these 15 attacks into two sets: 12 for training
and 3 for testing. The average length of an attack is 665 in this dataset.
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The BATADAL dataset is an extension of the WADI dataset. The attacks were designed for an attack detection
competition. This testbed consists of 26 sensors and 17 actuators. There are 7 attacks in total, which are divided
into 5 for training and 2 for testing. The average length of an attack is 70.

The PHM challenge 2015 dataset focuses on the operation of plants and the capability to detect failure events of
the plants in advance. This dataset is a collection of data from 70 plants and the number of sensors and actuators
varies from plant to plant. Therefore, we show the ranges (4-16 sensors and 4 actuators) of this dataset in Table 2.
The number of attacks also varies from plant to plant. We split these attacks into two groups: 9284-292064 for
training and 2322-72016 for testing. The average length of an attack is around 2, much smaller as compared to
SWaT, WADI, and BATADAL.
The gas pipeline dataset was collected from a gas pipeline testbed, which transports gas from one place to

another. There are 6376441 attacks in total, which are split into two groups: 51011 for training and 12753 for
testing. The average length of an attack is 4.

6.3 Evaluation Metrics and Statistical Tests

This section presents the evaluation metrics used herein. For RQ1-RQ3, we introduce three metrics (precision,
recall, and F1 score) for efectiveness evaluation in Section 6.3. In Section 6.3.2, we deine a novel metric called
Unit Training Time (UTT) for answering RQ4. In Section 6.3.3, we propose Detection Delay Time (DDT) for
answering RQ4. In Section 6.3.4, we briely introduce the employed statistical tests.

6.3.1 Metrics for efectiveness. LATTICE aims to provide practical information about anomalies to CPS. Such
information includes a general indication of whether the target CPS is under attack and detailed information
about the attack, e.g., starting time and duration. Correspondingly, we propose two types of metrics for RQ1-RQ3,
namely coarse-grained and ine-grained efectiveness metrics.

Coarse-grained efectiveness metric. This metric provides general information about an attack, i.e., the
existence of the attack. One practical usage scenario of LATTICE is that it can detect the existence of an attack
without much precise information such as the exact starting and ending time for this attack. Inspired by this
scenario, we propose Anomaly Coverage Rate (ACR) as in Equation 26

��� =

���������

������
(26)

where ��������� denotes the number of attacks detected and ������ denotes the total number of attacks. We
consider an attack detected if half of the attack instances are correctly classiied. ACR takes a value between 0
and 1, where a higher value indicates a higher number of attacks are successfully detected, and vice versa.

Fine-grained efectiveness metric. Although the coarse-grained efectiveness metric can assess LATTICE’s
ability to detect anomalies in general, details of attacks are neglected by ACR. This motivates us to evaluate
LATTICE with instance-wise metrics. Given the binary classiication nature of anomaly detection, we use three
standard classiication metrics [8, 30, 65]: precision, recall, and F1 score. In our context, precision is the percentage
of correctly detected anomaly instances among all the instances that are predicted as anomalies, while recall is
the percentage of correctly detected anomaly instances among all the anomaly instances. The F1 score is the
harmonic mean of precision and recall.

Formally, precision is deined in Equation 27:

��������� =

��

�� + ��
(27)
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where TP and FP stand for True Positive and False Positive, respectively. The recall is deined in Equation 28:

������ =
��

�� + ��
(28)

where FN denotes False Negative. �1 is deined in Equation 29:

�1 = 2 ·
��������� · ������

��������� + ������
(29)

6.3.2 Unit Training Time (UTT).. We observe that the training time of LATTICE depends not only on the model
itself, but also on the complexity of the CPS. Therefore, to evaluate the model’s eiciency, we propose UTT, a
CPS complexity-agnostic metric. Speciically, we irst identify the complexity-sensitive execution time �� and
divide it by the CPS complexity as in Equation 30.

��� =
��

�
(30)

Training time �� denotes the required convergence time of the model (Equation 31). We assume that the model
converges when losses reach the minimum. In other words, losses from two neighboring batches should have
minimal discrepancy (smaller than a threshold value � , i.e. � = 1� − 4).

�� = ���� (�����������) − ���� (�����) (31)

� stands for the complexity of the CPS. Since there is no out-of-box complexity metric for our purpose, we
propose the Metric of Complexity (MoC), which estimates the complexity of CPS from three aspects: CPS itself,
attack, and dataset, as formalized in Equation 32.

� = ���� + ���� + ���� (32)

CPS complexity. CPS complexity consists of static and automatic complexity (Equation 33). Static complexity
entails a CPS’s internal structure, e.g., the number of sensors and actuators. Such structure decides the dimension
of LATTICE’s input data in a ixed manner. However, not all the components in this structure are active during
training. Hence, we propose automatic complexity, which identiies only active components during training.

���� = ����.������ + ����.��������� (33)

For static complexity, we calculate the number of sensors and actuators in the CPS and normalize it as ��_�/� ,
allowing this metric to be calculated along with other metrics regardless of the scale of CPS. Moreover, we make
a crucial observation that value changes in actuators usually induce changes in sensor values. Such correlation
indicates dependencies between sensors and actuators. Therefore, we calculate sensors and actuators’ ratio ��_�/�
in the CPS in addition to the absolute number ��_�/� . Finally, we add ��_�/� and ��_�/� together as the static
complexity of CPS as shown in Equation 34.

����.������ = ��_�/� + ��_�/� (34)

However, not all the sensors and actuators are active during the process. As in the running example (Table 1),
FIT101, LIT101, MV101, and P101 are only active in Phase 1 of the water treatment process and become inactive
in other phases. Therefore, we propose automatic complexity for calculating only active sensors and actuators at
runtime as in Equation 35. Similar to static complexity, we calculate both the number and ratio of active sensors
and actuators. We then add the normalized number ��_�/� and ratio of ��_�/� together as in Equation 35.

����.��������� = ��_�/� + ��_�/� (35)
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Attack complexity. Attack complexity is computed based on the attack’s information, e.g., the number of attacks
in total. Formally, we calculate the attack complexity as in Equation 36, where ��_�/� denotes the normalized
number of attacks; ��_�/� denotes the ratio of attack and normal samples; and ��_���� denotes the normalized
number of diferent types of attacks.

���� = ��_�/� + ��_�/� + ��_���� (36)

Dataset complexity. Dataset complexity relects the scale of a given CPS dataset. Size is a good indicator
of the scale. Therefore, we normalize the dataset size as ����_���� and include it in the computation of dataset
complexity. Another scale’s indicator that we found is concept drift. Concept drift is a phenomenon where the
target variable’s statistical properties (e.g., mean/variance values of sensors) change over time [57]. As a result,
dataset complexity increases in the presence of concept drift. According to Schefel et al [48], this phenomenon is
prevalent in the CPS domain, which motivates us to include concept drift in dataset complexity computation. To
calculate concept drift, we take inspiration from Adaptive Sliding Window (ADWIN) [12] and propose a novel
concept drift complexity metric ����_��� � � . In conclusion, dataset complexity consists of information about dataset
size and concept drift as in Equation 37.

���� = ����_���� + ����_��� � � (37)

In detail, concept drift complexity is calculated as in Equation 38. �� and �� are two random samples selected,
respectively from two separate windows�� and�� (Equation 39). Let sample size be � , we calculate the KL
divergence of each pair of samples and calculate the average value for all the � pairs.

����_��� � � =

�,�︁

�=1,�=1

��(�� , ��)/� (38)

�� , �� = ������ (�� ), ������ (�� ) (39)

6.3.3 Detection delay time (DDT). As for DDT, we aim to assess how good LATTICE is at detecting anomalies at
early stages to prevent further damages. To this end, we count false negative samples ��� at the beginning of an
attack which consists of � samples. We then calculate DDT by dividing ��� by � as in Equation 40.

���� =
���

�
(40)

DDT indicates the delay of the assessed method when trying to detect an anomaly. It takes a value between 0
and 1. A lower DDT value means that the assessed method can detect attacks at an earlier stage.

6.3.4 Statistical Testing. Due to the inherent randomness of our approach, we employ statistical testing to answer
RQ1-RQ4 to determine whether the improvements are statistically signiicant.
In this paper, we use Mann-Whitney U test, which, unlike �−test, makes no assumption on the underlying

data distribution. We test all the pair-wise comparisons in each RQ. In general, to compare Method A and Method
B, we run each method 30 times, as suggested in [3]. The null hypothesis is that there is no statistical diference
between the two methods. If the null hypothesis is rejected, we conclude that Method A and Method B are not
equivalent.
Mann-Whitney U test results reveal the signiicant diference between Method A and Method B, whereas the

magnitude of this diference is unknown. Such magnitude can be assessed with an efect size. In this paper, we
use Vargha and Delaney’s A12 , which also requires no knowledge of the underline data distribution. An A12
value ranges from 0 to 1. If �12 = 0.5, it means that the results are obtained by chance. If �12 > 0.5, it means
Method A has a higher chance of getting better results than Method B, and vice versa.
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Concretely in this paper, RQ1 and RQ4 involve comparisons between LATTICE (Method A) with the baselines
(Method B). RQ2 involves comparisons between LATTICE (Method A) and LATTICE-DTM (Method B). RQ3
performs the ablation study by comparing LATTICE (Method A) with LATTICE-PDM, LATTICE-CEM, LATTICE-
HDM,LATTICE-CEM-HDM, and LATTICE-CL (Method B).

6.4 Parameter Setings

We use cross-validation to automatically select the hyperparameters of LATTICE. Cross-validation is a commonly
used hyperparameter tuning technique in machine learning [29]. The general idea is to train machine learning
models with diferent parameter settings and ind out optimal ones that yield the best performance. Speciically
for each hyperparameter set, we split each dataset into training and testing datasets. The training dataset is
then further split into ten chunks. We select one chunk as a validation dataset each time, while the remaining
nine chunks are used as training datasets. We perform ten such validation processes and calculate an average F1
score as a conclusion. We compare each hyperparameter set’s F1 score and ind the optimal set based on the
comparison result.

We divide LATTICE’s hyperparameters into two groups: respectively for ATTAIN and CL. We show our optimal
hyperparameters found by cross-validation as follows:

• ATTAIN hyperparameters.We set the batch size of input data as 64. The hidden dimension of the neural
network was set as 100, and Rectiied Linear Unit (ReLU) was used as the activation function. As for the
GCN layer, we used a gated GCN module and set the number of layers to 2.

• CL hyperparameters. We set the threshold value of the baby step algorithm to 0.8. We use the min-max
scaler to calculate the diiculty measurer. Min and max values are calculated with the historical data we
have for now. We plan to substitute this with more generic scalers in the future when needed.

6.5 Experiment Execution

In this paper, neural network layers were built with the PyTorch framework [42], and the GCN layer was
constructed with the PyTorch Geometric (PyG) framework [17]. All the experiments were carried out on Google
collaboratory notebooks, with Intel(R) Xeon(R) CPU at 2.00GHz, 12 GB system memory and for GPU, Tesla
V100-SXM2 with 16GB memory. To eliminate the efect of randomness, we repeated all the experiments 30 times,
and the average results were reported in this paper. For the SWaT dataset, we followed previous works [30] by
ignoring the irst 16000 records because the state of the CPS tends to be highly unstable during that period of
time after it is started.

7 RESULTS AND ANALYSIS

Section 7.1-Section 7.4 present the results for RQ1-RQ4, respectively.

7.1 Results and Analysis for RQ1

Table 3 shows the ACR results of LATTICE and the baselines (i.e., LSTM-CUSUM [18], MAD-GAN [34], and
ATTAIN [63]). Both LSTM-CUSUM and MAD-GAN were designed for CPS anomaly detection (see Section 3 for
more details). ATTAIN is our previous work, which is extended in this paper by introducing CL. We evaluate
these methods with ACR on the ive public datasets (Section 6.2). Anomalies in SWaT, WADI, and BATADAL
datasets have a longer duration and fewer occurrences than the PHM 2015 and Gas Pipeline datasets. We can
observe that all the methods achieve 100% on SWaT, WADI, and BATADAL, which means that they never miss
any anomaly. Contrarily, ACR values on the PHM 2015 and Gas Pipeline dataset are lower due to the anomalies’
shorter duration and higher occurrences. LATTICE achieves the highest ACR values on these two datasets,
demonstrating its superior capability at detecting anomalies in a coarse-grained manner.
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Dataset LSTM-CUSUM MAD-GAN ATTAIN LATTICE

SWaT 1 1 1 1

WADI 1 1 1 1

BATADAL 1 1 1 1

PHM2015 0.79 0.82 0.87 0.87

Gas Pipeline 0.77 0.81 0.85 0.91

Table 3. ACR results of LATTICE and the baselines

Figure 5 shows the ine-grained efectivenessmetric results of LATTICE. Three boxplots in each row demonstrate
the precision, recall, and F1 score on a speciic dataset. We can observe that LATTICE outperforms LSTM-CUSUM
and MAD-GAN by a large margin except for recall on WADI and BATADAL. LATTICE manages to further
improve ATTAIN in all ive datasets. For the SWaT dataset, the improvement is slight, but we argue that this is
because the precision, recall, and F1 scores are already high, and there is not much room for further improvement
at the irst place. Also, we can observe that, as compared to the baselines, the results of LATTICE have smaller
variances, indicating that LATTICE is more certain about its prediction.

As mentioned in Section 6.3, we repeated all the experiments 30 times and performed statistical tests. Table 4
shows the results of comparing LATTICE with each baseline. We consider � − ����� < 0.01 as a signiicant
diference. In terms of precision, LATTICE is signiicantly better than LSTM-CUSUM (5/5), MAD-GAN (5/5),
and ATTAIN ( 4/5 ). The minimum efect size for all the comparisons is 0.701. In terms of recall, LATTICE is
signiicantly better than LSTM-CUSUM (5/5), MAD-GAN (3/5), and ATTAIN (4/5), while the minimum efect size
is 0.771. Regarding the F1 score, LATTICE is signiicantly better than all the baselines for all the datasets with the
minimum efect size of 0.713.

Conclusion: RQ1

We conclude that LATTICE outperforms the baselines in terms of both the coarse-grained (i.e., ACR) and
ine-grained efectiveness metrics. Statistical test results show that this improvement is signiicant, and
LATTICE is more likely to yield better results. In short, our anomaly detector is more efective than the
baseline methods in the literature.

7.2 Results and Analysis for RQ2

The introduction of CL is the major contribution of LATTICE. To better understand CL’s inluence, we evaluate the
efectiveness of CL and perform an ablation study in this section.CL efectiveness. To evaluate CL’s efectiveness,
we compare LATTICE and LATTICE-CL, which removes CL from LATTICE. Figure 6 presents the box plots of
LATTICE and LATTICE-CL. We see a great performance decline when removing CL from LATTICE. LATTICE-CL’s
variance is also larger than LATTICE, indicating higher prediction uncertainty.

We also report the statistical test results in Table 5. The last column compares LATTICE with LATTICE-CL.
CL’s improvement on all ive datasets in precision, recall, and F1 score is signiicant (� − ����� < 0.05), except for
recall on WADI. The corresponding efect sizes are also strong (������� = 0.6944), indicating that LATTICE has
a higher probability of yielding better results than LATTICE-CL.

Ablation study In LATTICE, we explore three types of diiculty measurers: PDM, CEM, and HDM. PDM is a
predeined diiculty measurer, while CEM and HDM are automatic diiculty measurers focusing on entropy and
vector distance, respectively. We argue that each diiculty measurer contributes to the performance improvement
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Fig. 5. Efectiveness boxplots of LATTICE and the baselines

of LATTICE. Therefore it is valuable to assess the efectiveness of each diiculty measurer. To that end, we
perform an ablation study of each diiculty measurer.

• PDM efectiveness. LATTICE-PDM removes the PDM diiculty measurer from LATTICE. Figure 6 shows
that removing PDM decreases recall on all ive datasets. The precision on SWaT, BATADAL, and PHM
2015 also decreases while the precision on WADI and Gas Pipeline increases. Mann-whitney U-test results
(Table 5) show that the decreases are signiicant (� − ����� < 0.05) except for recall on WADI. The efect
size of the F1 score is very strong on SWaT, BATADAL, and PHM 2015 datasets.
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Table 4. Statistical test results of comparing LATTICE and the baselines

Datasets Metrics Testing LSTM-CUSUM MAD-GAN ATTAIN

SWaT

Precision
p-value <1e-4 9.518e-4 0.1294

A12 1.0 0.701 0.846

Recall
p-value <1e-4 <1e-4 0.0523

A12 1.0 1.0 0.336

F1
p-value <1e-4 <1e-4 1.13e-2
A12 1.0 1.0 0.713

WADI

Precision
p-value <1e-4 <1e-4 <1e-4
A12 1.0 1.0 1.0

Recall
p-value <1e-4 <1e-4 <1e-4
A12 1.0 0 0.875

F1
p-value <1e-4 <1e-4 <1e-4
A12 1.0 1.0 1.0

BATADAL

Precision
p-value <1e-4 <1e-4 1.684e-4
A12 1.0 1.0 0.886

Recall
p-value <1e-4 <1e-4 <1e-4
A12 1.0 0 1.0

F1
p-value <1e-4 <1e-4 <1e-4
A12 1.0 1.0 1.0

PHM2015

Precision
p-value <1e-4 <1e-4 2.833e-4
A12 1.0 1.0 0.791

Recall
p-value <1e-6 <1e-4 1.886e-4
A12 1.0 1.0 0.771

F1
p-value <1e-6 <1e-4 3.79e-6
A12 1.0 1.0 0.872

Gas Pipeline

Precision
p-value <1e-4 <1e-4 1.886e-4
A12 1.0 1.0 0.811

Recall
p-value <1e-4 <1e-4 <1e-4
A12 1.0 1.0 1.0

F1
p-value <1e-4 <1e-4 <1e-4
A12 1.0 1.0 1.0

• CEM efectiveness. LATTICE-CEM removes the CEM diiculty measurer from LATTICE. We can observe
from Figure 6 that removing CEM decreases precision, recall, and F1 score in all cases. Mann-whitney
U-test results demonstrate these decreases’ signiicance (� − ����� < 0.05) except for precision on the gas
pipeline dataset. The efect sizes are strong with a minimum of 0.7189 (F1 score on gas pipeline dataset).

• HDM efectiveness. LATTICE-HDM removes the HDM diiculty measurer from LATTICE. Similar to
LATTICE-CEM, LATTICE-HDM also sufers a decline in precision, recall, and F1 score in all the cases.
Mann-whitney U-test results demonstrate these decreases’ signiicance (� − ����� < 0.05) except for
precision on the gas pipeline dataset. The efect sizes are strong with a minimum of 0.7211 (recall score on
PHM 2015 dataset).

• DTM efectiveness. LATTICE-CEM-HDM removes the CEM and HDM diiculty measurers, which are
computed with DTM information. The comparison between LATTICE and LATTICE-CEM-HDM shows the
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efectiveness of introducing DTM in CL. We can observe from Figure 6 that LATTICE-CEM-HDM further
decreases precision, recall and F1 score in all the cases. All the p-values are smaller than 0.05 except for
recall on WADI datasets, while the corresponding efect sizes are strong (������� = 0.7389).

Conclusion: RQ2

We conclude that CL is efective in improving the efectiveness of DTC, and each diiculty measurer (i.e.,
PDM, CEM, or HDM) contributes to this improvement.

Fig. 6. Boxplots of the ablation study experiment results

7.3 Results and Analysis for RQ3

As we target large-scale real-world CPS, eiciency is crucial for LATTICE. As mentioned in Section 6.3, we use
UTT to evaluate the eiciency of LATTICE. Table 6 shows the results of the UTT of each method, along with the
complexity of each CPS. We can observe that LATTICE improves ATTAIN by 4.2% ( 9.513−9.114

9.513
) in terms of UTT.

LSTM-CUSUM takes the least time among all four methods. However, as reported in RQ1-RQ3, LSTM-CUSUM is
the least efective method among all. Table 6 further shows that LATTICE takes less time on the SWaT, WADI,
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Table 5. Statistical test results of the ablation study

Datasets Metrics Testing -PDM -CEM -HDM -CEM-HDM -ALL

SWaT

Precision
p-value 0.0128 <1e-4 <1e-4 2e-04 <1e-4
A12 0.6811 0.78 0.9344 0.7733 1

Recall
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.8622 0.87 0.8544 0.7922 1

F1
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.81 0.8778 0.94 0.85 1

WADI

Precision
p-value 0.0405 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.3578 0.94 0.8589 1 1

Recall
p-value 0.2449 0.0024 0.1347 0.0024 0.4161
A12 0.5611 0.74 0.58 0.7389 0.4444

F1
p-value 0.0667 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.3722 0.9433 0.8711 1 1

BATADAL

Precision
p-value <1e-4 <1e-4 0.0054 <1e-4 <1e-4
A12 0.9444 0.9844 0.6944 1 1

Recall
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.9522 0.8711 0.9167 0.8911 1

F1
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.9911 0.9978 0.87 1 1

PHM 2015

Precision
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 1 1 0.9722 0.9989 1

Recall
p-value 0.1142 <1e-4 0.0017 <1e-4 <1e-4
A12 0.5756 0.7567 0.7211 0.9178 0.9978

F1
p-value <1e-4 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.9944 0.9922 0.9689 0.9989 1

Gas Pipeline

Precision
p-value 0.0473 0.685 0.6702 0.3184 0.0011
A12 0.3311 0.4444 0.4856 0.57 0.6944

Recall
p-value 0.0277 <1e-4 <1e-4 <1e-4 <1e-4
A12 0.7122 0.9178 0.8389 1 0.9633

F1
p-value 0.9193 0.001 <1e-4 <1e-4 <1e-4
A12 0.4989 0.7189 0.7456 0.9456 0.9722

and BATADAL datasets, while it takes more time on the PHM 2015 and Gas pipeline datasets. However, we argue
that this increase is small and caused by the anomalies’ short duration in these two datasets. Short anomalies
present smaller complexity, which can train a simpler model quickly. LATTICE is more complicated, as compared
to ATTAIN and MAD-GAN, hence the longer UTT.
Similar to RQ1-RQ3, we also collected the execution time of 30 runs. We calculate the UTT of these runs

and performed the Mann-Whitney U-test, the results of which are reported in Table 7. We can observe that
LSTM-CUSUM takes signiicantly less time than LATTICE (� − ����� < �) on all the ive datasets, but we exclude
it from this comparison due to its low efectiveness. LATTICE takes signiicantly less time than MAD-GAN
and ATTAIN (� − ����� < �) on all the datasets except for the PHM2015 and Gas Pipeline datasets. In terms of
A12, the results between LATTICE and ATTAIN are also strong (with the maximum being 0.303) except on the
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Table 6. Results of eficiency (measured in UTT) of LATTICE and the baselines

Datasets Complexity LSTM-CUSUM MAD-GAN ATTAIN LATTICE

SWaT 0.436 3.050 8.628 8.817 8.514

WADI 0.771 4.901 14.302 15.581 12.134

BATADAL 0.472 4.544 8.280 8.22 7.989

PHM2015 0.180 4.944 5.533 6.117 8.539

Gas Pipeline 0.479 5.282 8.591 8. 8.401

Average 0.468 4.544 9.067 9.513 9.114

PHM2015 dataset (1.0). The results between LATTICE and MAD-GAN are strong (with the maximum being 0.341)
except for PHM2015 (1.0) and Gas Pipeline (0.432).

Table 7. Statistical test results of Unit Training Time (UTT) of LATTICE and the baselines

Datasets Testing LSTM-CUSUM MAD-GAN ATTAIN

SWaT
p-value <1e-6 8.705e-2 <1e-6
A12 1.0 0.341 0.0

WADI
p-value <1e-6 <1e-6 <1e-6
A12 1.0 0.0 0.0

BATADAL
p-value <1e-6 3.239e-6 4.968e-5
A12 1.0 0.122 0.221

PHM2015
p-value <1e-6 <1e-6 <1e-6
A12 1.0 1.0 1.0

Gas Pipeline
p-value <1e-6 0.3492 7.296e-4
A12 1.0 0.432 0.303

Conclusion: RQ3

LATTICE generally reduces UTT compared to the baselines. Therefore, we conclude that LATTICE is on par
with the baselines in terms of eiciency.

7.4 Results and Analysis for RQ4

RQ4 aims to evaluate how early LATTICE can detect an anomaly. We use DDT as the evaluation metric (Sec-
tion 6.3.3). Table 8 shows the detection time for LATTICE and the baselines on the SWaT, WADI, and BATADAL
datasets. We do not include the PHM 2015 and Gas Pipeline datasets in this RQ because their average anomaly
lengths are quite small (2 and 4, respectively). DDT degrades to the coarse-grained efectiveness metric for short
anomaly detection since a large DDT is equivalent to missing an anomaly.
We present Mann-whitney U-test results and efect sizes in Table 7. Compared to LSTM-CUSUM, LATTICE’s

DDT decreases are all signiicant (� − ����� < 0.05) and all efect sizes are strong (�12 = 1). Compared to
MAD-GAN, the decreases in WADI and BATADAL are signiicant (� − ����� < 0.05), and efect sizes are strong
(�12 = 1 and�12 = 0.88 respectively). However, the SWaT dataset’s decrease is not signiicant (�−����� = 0.2621).
Similarly, we observe signiicant diferences for the WADI and BATADAL datasets (� − ����� < 0.05) and no
signiicant diferences for the SWaT dataset (� − ����� = 0.3931) when comparing LATTICE and ATTAIN. The
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efect sizes on WADI and BATADAL are 0.6578 and 0.9456, respectively, indicating that LATTICE is more likely to
detect anomalies faster on these two datasets.

Dataset LSTM-CUSUM MAD-GAN ATTAIN LATTICE

SWaT 0.2% 0.1% 0.1% 0.1%

WADI 6% 5.7% 5.3% 5.1%

BATADAL 4.7% 4.5% 4.5% 4.1%

Table 8. Results of detection delay time

Dataset Testing LSTM-CUSUM MAD-GAN ATTAIN

SWaT
p-value <1e-4 0.2621 0.3931
A12 1 0.6133 0.4711

WADI
p-value <1e-4 <1e-4 0.0185
A12 1 1 0.6578

BATADAL
p-value <1e-4 <1e-4 <1e-4
A12 1 0.88 0.9456

Table 9. Statistical testing results of detection delay time

Conclusion: RQ4

LATTICE reduces detection delay on all three datasets when compared with the baselines. Therefore, we
conclude that LATTICE is on par with the baselines in terms of detection delay time.

8 OVERALL DISCUSSION

As discussed in the previous sections, LATTICE beneits from CL and digital twin, which allow it to be more
efective in anomaly detection. Below, we discuss, in detail, the plausible reasons for LATTICE achieving the
efectiveness improvement.
Advantage of the predeined diiculty measurers. In Section 5.1.1, we propose a predeined diiculty
measurer, consisting of complexity, diversity, noise, and vulnerability. We conducted surveys with these four
measurers and found their correlation with the attack labels. We believe capturing this correlation is one of
the potential reasons for performance improvement [33]. We use the Spearman correlation coeicient test for
studying the correlation of attack labels with the four measurers. This is a non-parametric test, which is calculated
based on the rankings of two variables. The correlation coeicient tends to be high if observations from the two
variables have a similar rank position and vice versa. The coeicient value ranges between −1 and 1. Figure 7
shows the correlation graph between diversity and the attack labels on the SWaT, WADI, BATADAL, and Gas
Pipeline datasets. We make a subset containing at least one complete anomaly for each dataset. Correlations are
calculated with these subsets instead of the whole datasets for illustrative purpose. We ind that vulnerability (the
last column of Figure 7) has the highest correlation with the attack labels, which is expected because vulnerability
is calculated based on the time diference with the attack. Among the other three measurers, diversity has
the highest correlation. We ind higher correlations in the SWaT, WADI, and BATADAL datasets, while the
correlations in the PHM 2015 challenge and Gas pipeline datasets are weaker. We believe this is because the
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Fig. 7. Spearman Correlations between the atack labels and the dificulty measurers

average attack length is much smaller in these two datasets than in the others. Average attack lengths in the
PHM 2015 challenge and Gas pipeline datasets are only 2 and 4, respectively. Spearman correlation can hardly
capture correlations for such short attacks. However, the high correlations in SWaT, WADI, and BATADAL are
suicient to support our hypothesis that the diversity is related to the attack labels.
Advantage of the automatic diiculty measurers. We successfully adapted CL to time series data by intro-
ducing the contextualized diiculty measurer. Most existing CL approaches use context-free diiculty measurers,
implying that the diiculty score of each sample is assigned based on its generic characteristics such as diversity,
noise level, and intensity. These context-free diiculty measurers are suicient for classiication tasks in the
natural language processing and image recognition domains, while the classiication of time series data requires
consecutive data for reserving chronological characteristics [28, 36]. In this paper, we take advantage of DTM and
propose two automatic diiculty measurers: CEM and HDM. CEM and HDM successfully incorporate context
information into the diiculty scores of each sample. The ablation study in Section 7.2 shows the improvement
brought by these two contextualized diiculty measurers. Figure 6 shows a signiicant performance drop between
LATTICE and LATTICE-CEM-HDM.
Advantage of CL’s optimization principle. Another reason for the improvement is the optimization principle
of CL. Bengio et al. [6] pointed out that CL can be seen as an optimization strategy for non-convex functions.
Such a strategy irst optimizes a smoother version of the problem to reveal the global picture and then gradually
considers less smoothing versions until the target objective of interest is reached. In our case, the introduction of
CL potentially prevents our method from getting stuck at a local optimum. As we can observe in the example
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(Table 1), the irst attack starts at 10:29:14 after 29 minutes of normal operation. Consequently, we acquire far
more normal data than anomaly data, inducing machine learning methods to a local optimum. CL, however,
alleviates this problem by re-ordering batches based on diiculty scores. Particularly, diicult samples are fed
into our model gradually, presenting a smoother optimization problem. CL enables LATTICE to learn the global
picture instead of being stuck at a local optimum while speeding up the whole training process.

9 THREATS TO VALIDITY

We identify four common types of threats to the validity of our experiments, as discussed below.
Conclusion Validity. We evaluate our method with metrics such as precision, recall, F1, UTT, and DDT.

Precision, recall, and F1 are commonly used in classiication tasks. However, other metrics, such as ROC and false
positive rate, could also be adopted for our evaluation. This could pose a threat to the conclusion validity. These
metrics are less commonly used and evaluate the efectiveness of models from similar perspectives as precision,
recall, and F1. We will include these metrics in the future if needed.

Another threat could be that we performed the statistical tests with the Mann-Whitney U-test on samples with
a sample size of 30. We are aware that larger sample sizes are always preferred, which however comes with a
cost. In the future, when more resources are available, we will conduct experiments with larger sample sizes.
Construct Validity. We also empirically studied whether LATTICE beneits from CL and digital twin for

CPS anomaly detection. To that end, we designed LATTICE with digital twin trained with speciic CL strategies.
However, we are aware that there are other options for digital twin and CL design. Therefore, more experiments
are needed to try out various ways of constructing digital twin and diferent CL strategies, to know better about
the potential of CL and digital twin contributing to the performance of LATTICE.
Internal Validity.We compared LATTICE with three baselines: LSTM-CUSUM, MAD-GAN, and ATTAIN,

which are the state-of-art in anomaly detection. But we notice that there are other models that can potentially
outperform these baselines, such as variational autoencoder and deep belief networks. In the future, we will
choose more representative models and conduct more experiments.
External Validity. Our experiments were performed on ive testbeds, which are scaled datasets from real

operating CPS.Without conducting experiments with real CPS and on diferent types of CPS, we cannot generalize
the performance of LATTICE. However, we would like to point out that, in our context, to conduct experiments
with real CPS, LATTICE needs to get connected to them during their operations and obtain their operating data at
runtime. Setting up this kind of experiment is complicated and expensive. We plan to work with our collaborators
and apply our method in real-world CPS in the future.

10 CONCLUSION AND FUTURE WORK

LATTICE is a novel method, which combines both digital twin and curriculum learning (CL) to address the
anomaly detection challenge of CPS. LATTICE extends our previous work ATTAIN. ATTAIN consists of a
timed automaton-based digital twin model and a GAN-based digital twin capability. The digital twin model
provides ground truth labels indicating whether a CPS is operating in a normal state. Doing so allows ATTAIN to
take advantage of a large amount of unlabeled real-time data obtained during the CPS operation and enables
ATTAIN to continuously learn along with the operation. We extended ATTAIN by introducing CL to optimize its
training process, which forms LATTICE. We performed extensive experiments with LATTICE on ive CPS datasets.
Experiment results show the performance superiority of LATTICE in comparison to two state-of-art anomaly
detectors and ATTAIN, increasing by 0.906%, 2.363%, 2.712%, 2.008%, 2.367% on the SWAT, WADI, BATADAL,
PHM Challenge 2015, and Gas Pipeline datasets, respectively. We also demonstrated the efectiveness of CL and
the diferent diiculty measurers with the ablation study. Finally, we demonstrated that LATTICE is on par with
the baselines in terms of the training time and detection delay time.
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In the future, we plan to conduct more experiments on real-world CPS of various domains to evaluate the
scalability and generalization of LATTICE. We will also consider exploring digital twins for more challenging
tasks, such as detecting attacks targeting multiple CPS simultaneously which requires developing an integrated
digital twin model.
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