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1. Purpose of the document 

1.1. Document structure 

This document presents the research and experiments done on the application of test oracles at the 

operational time of CPSoS.  

Section 3 introduces some background on Test Oracles, as well as the state-of-the-art.  

Section 4 is focused on Organic Oracles at operation. The section starts with a detailed description of the 

formalisation of Organic Test Oracles, to then explain how Uncertainty is handled within Organic Test Oracles, 

and finishes presenting the integration with Adeptness Microservice Template.  

Section 5 introduces Pre-Specification Test Oracles. First, preliminary experimentation in this regard is 

introduced. Next, the approach used to fit Pre-specification Oracles in the Adeptness Context is described. 

And finally, the integration of this type of oracles with the Adeptness Microservice Template is explained.  

Section 6 is dedicated to Metamorphic-based Test Oracles, where the Testing Interface and the Metamorphic 

Relations are described. Next, the experiment carried out is presented, starting with the setup, and concluding 

with some results.   

The deliverable culminates with some conclusions on the experiments carried out regarding the application 

of test oracles at the operational time of CPSoS. 

1.2. Deviations from the original Description in the Grant Agreement 

Annex 1 Part A 

1.2.1. Description of work related to deliverable in GA Annex 1 – Part A 
There are no deviations with respect to work of this deliverable. 

1.2.2. Time deviations from original planning in GA Annex 1 – Part A 
There are no deviations with respect to work of this deliverable. 

1.2.3. Context deviations from the original plan in GA Annex 1 – Part A 
There are no deviations from the Annex 1. 
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2. Introduction  

Design-operation continuum methods require seamless integrations between the design-time approaches 

and operation-time approaches. These include the case of test oracles. Test oracles aim at determining 

whether the system is behaving as expected or not. Traditionally, test oracles have been applied for design-

time testing, while its operation-time has been limited to simple run-time verification functions. However, 

determining whether a Cyber-Physical Systems (CPS) is behaving as expected is nontrivial. In some cases, 

such systems suffer from the test oracle problem (i.e., determining the test outcome is non-feasible). 

Furthermore, CPSs are inherent to different kinds of uncertainty (e.g., uncertainty in the environment, 

uncertainty of networks, etc), thus, the oracle needs to deal also with it. In this deliverable we analyse three 

different types of test oracles: (1) organic test oracles, (2) pre-specification test oracles and (3) metamorphic 

test oracles. We analyse how each of these can be applied on the design-operation continuum of CPSs, 

solving the aforementioned limitations. 
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3. Background and State of the art on test oracles 

3.1. Background 

A test oracle is the source in charge of determining whether a system complies with the specified properties 

or not. Four types of test oracles are typical for testing software systems: (1) Organic test oracles, (2) Pre-

specification test oracles, (3) Internal test oracles and (4) Metamorphic test oracles. Figure 1 shows an example 

of an organic test oracle. These oracles take as input both, the input of the SUT as well as the output of the 

SUT. The oracle is structured with all the necessary sources to determine which the verdict of the inputs should 

be; Figure 2 High level structure of an organic oracle shows a high-level structure of these kind of oracles 

proposed for the context of Cyber-Physical Systems (CPSs). Typically, these oracles check specific system 

requirements, for which each requirement is composed by the pre-condition and the assertion. The pre-

condition checks whether the system has been activated. If the requirement has been activated, then the 

assertion is computed (i.e., it is checked whether the system holds the specified requirement).  

 

FIGURE 1 EXAMPLE OF AN ORGANIC TEST ORACLE 

 

FIGURE 2 HIGH LEVEL STRUCTURE OF AN ORGANIC ORACLE 

Other kinds of test oracles are those related to pre-specification test oracles. Figure 3 shows the high-level 

structure of these kinds of oracles. Unlike organic test oracles, these oracles get only as input the inputs of 

the SUT. As output, they provide the reference values that the SUT should have, which are compared against 

the SUT by the checker, returning a verdict (e.g., PASS, FAIL). There are different kinds of these test oracles. 

The most typical ones are related to the regression test oracles, for which the test oracle replicates a previous 

version of the SUT, which is considered as a “baseline”. There might also be an “implementation 

approximation”, for which expected results are obtained from a reference work. In re-engineering of systems, 

there might also be what is known as a “golden implementation”, where existing applications can be used to 

generate expected results (e.g., this might happen when re-engineering a SUT, for which white-box access is 

not available). The oracle might even be manual, where the expected results are determined by hand.  
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FIGURE 3HIGH LEVEL STRUCTURE OF PRE-SPECIFICATION TEST ORACLES 

Internal oracles are those that are programmed inside the SUT. Typically, these oracles are developed by the 

developers, which insert assertions in the internal program to check the run-time behaviour of the SUT. A 

drawback of such oracles is that they are intrusive, therefore, they can have an impact on the running time of 

the implementation. These kind of test oracles are not analysed in this Deliverable. 

Metamorphic testing~\cite{1998-chen-tr} is a technique aiming to alleviate the oracle problem (i.e., when it is 

not possible to determine which the outcome of the SUT should be). It is based on the intuition that often it 

is simpler to reason about relations between the inputs/outputs of multiple, related test executions, rather 

than the relations between inputs/outputs of each individual test execution 1. Given two test cases defined by 

their corresponding inputs and outputs TC_1 = {I_1, O_1}, TC_2 = {I_2, O_2}, whenever a given input relation 

r_i holds between the two inputs, a corresponding output relation r_o is expected to hold between the 

outputs. Hence, the metamorphic oracle can be expressed as r_i(I_1, I_2)  r_o(O_1,O_2).  

The goal of Adeptness is to (1) investigate these kinds of test oracles in the context of CPSs and (2) adapt such 

test oracles for testing CPSs both at design-time as well as at operation-time. The former has different 

challenges which are specific to the context of CPSs, such as, the impossibility of determining which the test 

output should be (tackled by metamorphic test oracles), or the time-continuous behaviour of CPSs. The latter 

has other challenges, such as those related to interoperability of test oracles for being tested at different 

Design-Operation continuum test levels, as well as the issue of needing multiple test executions in the context 

of metamorphic or pre-specification test oracles or dealing with the uncertainty that the CPSoS are exposed 

to. In such cases, we leveraged the use of Artificial Intelligence (AI) algorithms to substitute the execution of 

the system, which, in the case of CPSoS are highly time-consuming. 

3.2. Related work 

In the context of CPSs and CPSoS, different test oracles have been proposed. Zander 2 used organic test 

oracles for embedded systems from the automotive domain. Kane et al., specified test oracles based on 

requirements 3. Nevertheless, all of them assume that the tests are going to be executed at design-time. The 

type of systems they are testing have well stablished requirements since they come from the safety domain. 

However, most CPSs are untestable, which means that their test outcome is not easy to determine. 

Furthermore, if the test oracles need to be re-used at operation-time, these need to consider the inherent 

uncertainty at which CPSs are exposed to.  

                                                      

1 Ayerdi, J., Terragni, V., Arrieta, A., Tonella, P., Sagardui, G., & Arratibel, M. (2021, August). Generating metamorphic relations for cyber-physical systems 

with genetic programming: an industrial case study. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and 

Symposium on the Foundations of Software Engineering (pp. 1264-1274). 

2 Zander-Nowicka, J. (2009). Model-based testing of real-time embedded systems in the automotive domain. 

3 Kane, A., Fuhrman, T., & Koopman, P. (2014, June). Monitor based oracles for cyber-physical system testing: Practical experience report. In 2014 44th Annual 

IEEE/IFIP International Conference on Dependable Systems and Networks (pp. 148-155). IEEE.
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To overcome the first limitation, i.e., the test outputs not being feasible to be obtained, several works have 

relied on metamorphic testing. Specially, this technique has been applied to test autonomous vehicles 4,5. This 

technique has also been applied in other contexts, such as autonomous unmanned aerial vehicles 6. However, 

to the date there are no contexts related to real industrial CPSs where such technique has been applied on. 

Furthermore, this technique is solely designed for design-time testing, not being possible to later use it for 

operation-time testing. 

Another option for solving the test oracle problem which is envisioned in Adeptness is the use of Machine-

learning as a surrogate of regression test oracles. The use of machine-learning algorithms to alleviate the test 

oracle problem is not new, although it has receieved significantly less attention than other software testing 

activities (e.g., test selection).  

A recent systematic survey performed by Durelly et al. identified a total of 10 studies where machine learning 

algorithms were used to construct oracles7. As a substitute of regression test oracles, machine-learning 

algorithms were used to predict the expected output of SUTs in two studies 8,9. One of them used artificial 

neural networks, while the other used regression trees and neural networks. Nevertheless, their approach is 

applied for unit testing, while in Adeptness we are focusing on system-level tests. Furthermore, their evaluation 

is performed in a toy example involving the triangle type problem, where determining the test outcome is 

trivial.  

When testing CPSs, simulation-based testing is the main driving technology. In such contexts, recent studies 

tackle the test oracle problem.  Menghi et al. proposed a test oracle generation tool for Simulink models, 

which was based on a Domain Specific Language 10. Stocco et al. proposed a technique for testing 

autonomous vehicles whose control algorithm is based on deep neural networks 11. Their oracle employs 

simulation-based testing and determines a confidence value for the system at each step of the execution. 

While this is a CPS, their approach is not generalizable to any kind of CPS but limited to the domain of 

autonomous driving.  

In Adeptness we not only want to explore the test oracle problem for design-time testing, but also be able to 

re-use such oracles in a seamless way for operation-time testing. For such purpose, it is highly important to 

(1) deal with the inherent uncertainty at which CPSs are exposed to and (2) solve the issue of requiring multiple 

test executions by those test oracles based on that (i.e., pre-specification and metamorphic test oracles). 

  

                                                      

4 Zhi Q Zhou and Liqun Sun. Metamorphic testing of driverless cars. 2019. 

5 Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of the 

40th international conference on software engineering, pages 303–314. ACM, 2018. 

6 Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. Metamorphic model-based testing of autonomous systems. In 2017 IEEE/ACM 2nd 

International Workshop on Metamorphic Testing (MET), pages 35–41. IEEE, 2017 

7 V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R. Dias, and M. P. Guimaraes, “Machine learning applied to software testing: A systematic 

mapping study,” IEEE Transactions on Reliability, vol. 68, no. 3, pp. 1189–1212, 2019. 

8 H. Jin, Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang, “Artificial neural network for automatic test oracles generation,” in 2008 International Conference on 

Computer Science and Software Engineering, vol. 2. IEEE, 2008, pp. 727–730. 

9 A. Singhal and A. Bansal, “Generation of test oracles using neural network and decision tree model,” in 2014 5th International ConferenceConfluence The 

Next Generation Information Technology Summit (Confluence). IEEE, 2014, pp. 313–318. 

10 C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand, “Generating automated and online test oracles for simulink models with continuous and uncertain 

behaviors,” in Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software 

Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, 2019, pp. 27–38. 

11 A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour prediction for autonomous driving systems,” in Proceedings of 42nd International Conference 

on Software Engineering, ser. ICSE ’20. ACM, 2020, p. 12 pages. 
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4. Organic oracles at operation 

A large number of CPSoS properties can be validated and tested by employing organic oracles. A special 

effort was done to formalise such kind of test oracles that are reusable at different stages of software 

development. As a result, the designed test oracles are stage independent enough to be executed at Model-

in-the-Loop (MiL), Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) levels, but also at operation.  

This fact is particularly interesting as software development requires to be tightly connected with the 

operational stage as the software is being executed in a real environment. An important aspect to consider 

when a CPS is in operation is the uncertainty at which the CPS is exposed. To tackle this, the organic test 

oracles that we present provide means to handle uncertainty.  

4.1. Formalisation of organic test oracles 

As stated in the deliverable 4.1. DSL for continuous validation of CPSoS, an industrial case study from the 

elevation domain was taken as a starting point to formalise the test oracles for the Adeptness infrastructure. 

Then, with the aim of developing a case-study agnostic test oracles, the results were generalised using open-

source benchmarks. 

The resulting model is illustrated in Figure 4. This model was presented in 4.1. DSL for continuous validation 

of CPSoS, however, we consider that the work done is also part of the task we are presented in this deliverable.  

The model is divided into two main parts, the MonitoringFile and the CPS. These are located at the top of the 

figure, inherited from the Type component, which, in turn, is at the same level as PackageDeclaration and 

Imports components. Each part could be developed in a separate file. The CPS section is intended for the 

description of the oracles, and the MonitoringFile section is intended for the declaration of the signals required 

by the oracles. The latter, also known as the monitoring plan, could be imported from an oracle definition file, 

and as can be seen in the figure, is referenced from the CPS component. Therefore, if a monitoring plan is 

defined in a separate file, it could be used in several oracles’ definition files.  
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FIGURE 4 ORGANIC ORACLES MODEL 

In the following sections we are going to explain in detail the organic oracle’s model. 

4.1.1. Monitoring plan 
To define organic test oracles, it is necessary to identify and extract available CPS monitoring variables. As 

mentioned earlier, these monitors are defined in a separate file: the monitoring plan file. Within the file, first, 

the monitoring plan is given a name and then, for each of the monitors declared, a name, data type and 

maximum and minimum values are specified. The maximum and minimum values are only necessary if the 

specified data type is numeric (i.e., double and Boolean). The following figure gathers the section of the model 

that represents the monitoring plan file: 
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FIGURE 5 MONITORING PLAN MODEL 

4.1.2. Oracle definition 
After defining the monitoring plan, oracles for each CPS within a CPSoS are defined. Oracles are defined at 

CPS level instead of CPSoS because, despite the interaction of another CPS can be influenced, the monitoring 

data is associated and obtained from a single CPS. A CPS might have information of other CPSs (e.g., for 

Orona’s use-case the traffic master always monitors the status of the doors to better estimate serving times). 

Each CPS implements a monitoring plan, which means that it has accessible all data defined in the monitoring 

plan (previous figure). Additionally, it is possible to include cardinality at this level, meaning that CPS that 

behave equally could reuse the same oracles, changing the monitoring plan. Below, the oracle’s definition 

section of the model can be found. As can be seen, the CPS component inherits the name attribute from 

Type, includes a MonitoringFile, and may be composed of several Oracles.  

As for the Oracle definition, on the right side, there are the components for specifying a precondition, which 

could be When or While and, on the left side, there is the Check component. The latter gathers the assertion 

definition, which is a conjunction of the signal to be asserted (modelled by the component ExpressionModel) 

and an assertion pattern and a reference signal (modelled by the component Reference), a failure reason 

(modelled by the FailReason component) and, finally, a Description. In the following paragraphs further details 

of the preconditions, the assertion and the failure reason are going to be provided. 

 

 



ADEPTNESS – 871319  PU 
D3.1 – Report on the application of test oracles at the operational time of CPSoS 

 Adeptness – 871319   14 /39 

 

FIGURE 6 MODEL OF THE ORACLE DEFINITION RELATED SECTION 

Further details in the organic test oracle’s definition model are going to be provided in the following sections. 

Precondition 

Specifying a precondition allows defining test oracles that are not continuously assessing the status of a CPS 

and giving verdicts accordingly. A precondition aims to insert a previous step that must be fulfilled in order 

to evaluate the assertion. A precondition is represented by operations among signals and values, reflecting a 

status of a CPS, and should evaluate to true or false.   

Within the analysed scenarios, in some cases, the need to wait for a certain period of time before assessing 

the status of a CPS was observed. With this in mind, the Adeptness organic test oracles could include waiting 

clauses that specify the period of time between the precondition is met and the assessment takes place.  

Figure 7 gathers the section regarding the precondition of an organic test oracle. A precondition is optional, 

as there can be oracles that constantly assert data. If it is set, it is the starting point of the testing process. A 

precondition is a Boolean condition expressed through a While or a When component. As can be seen, both 

preconditions are composed by an ExpressionsModel, which in turn, enables the creation of an expression 

that can be evaluated to true or false. Although the model allows for different types of expressions, this 

constraint should be enforced afterwards. The difference between these two conditions is that the While 

precondition specifies system states, and therefore the assert must be performed during the same cycle(s) in 

which the assertion is checked. On the contrary, the When precondition specifies an event, and when this 

event is given, there is no need to remain asserting it while the assertion is being checked. Although the two 

preconditions act in a similar way, the difference becomes obvious when the assertion specifies a temporal 

condition (covered in the following paragraphs). Additionally, a When precondition allows for expressing an 

After temporal-logic expression through a Wait component and pauses the oracle for the specified time and 

then, the assertion is checked. The Wait component is composed by a time value and a time unit,  
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FIGURE 7 PRECONDITION RELATED SECTION OF THE MODEL 

Assertion 

An assertion is decisive for a test oracle to fail or succeed. The compliance or non-compliance of this condition 

indicates if a certain property of a CPS, modelled with the test oracle, is fulfilled or not. As previously stated, 

if a precondition is set, the evaluation of the assertion completely depends on the precondition. CPS properties 

were analysed to define the assertion. As a result, the main assertion of the oracle is composed by a signal to 

be evaluated, a comparison pattern, a signal to compare (we refer to this in the remainder of the deliverable 

as the reference signal) and, optionally, a temporal condition that determines the duration at which the 

assertion must be checked. The latter only makes sense if a precondition was specified for the oracle.  

Figure 8 illustrates the six different patterns we identified through our conversation with industrial CPS 

practitioners (including Orona’s engineers and companies from ADEPTNESS’s advisory board) and by 

reviewing the state-of-the-art on CPSs testing. The red lines stand for a reference signal and denote the 

boundaries of the grey area. The signal being tested should be placed inside this area in order for the oracle 

to pass the test. 
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FIGURE 8 ORACLE ASSERTION PATTERNS 

The following figure illustrates the section of the model where the assertion is defined. On the one hand, the 

signal to be assessed is defined through the ExpressionModel, which must be constrained afterwards to 

express a signal. On the other hand, we defined the comparison pattern and the reference signal. The patterns 

presented above are modelled through the Same, NotSame, Upper, Lower, Range and Gap components, 

Upper corresponding to the below pattern and Lower to the above pattern. The reference signal is modelled 

through the Bound_up or Bound_down component, however, in the case of the in range or gap pattern both 

reference signals are necessary. Finally, temporal conditions for the assertion could be established through 

the At_least, At_most and Exactly components of the model. 

 

FIGURE 9 ASSERTION RELATED SECTION OF THE MODEL 
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Failure reason 

The test oracles, in addition to delivering a verdict on whether an assertion is met or not, it was considered 

interesting to also indicate the degree of compliance. With this in mind, data assertions are converted into a 

confidence level value each cycle an assertion is evaluated. The confidence level value ranges from -1 to 1 and 

2. A positive value means that the property defined within the checks is asserted as “PASS”, whereas a negative 

value means that the property is being violated. The 2 confidence value refers to an oracle not fulfilling the 

specified precondition, and therefore the property is not being checked (i.e., inconclusive). The following table 

gathers the equations used to calculate the confidence level value for each pattern. Sign stands for the signal 

under check, min and max stand for the minimum and maximum values of the signal, respectively, and ref, 

upperRef and lowerRef stand for a reference signal of the pattern; in cases where there is only one reference 

signal, ref is used, otherwise, upperRef is used for the upper bound reference signal, and lowerRef for the 

lower bound reference signal. 

TABLE 1 EQUATIONS FOR THE CALCULATION OF THE CONFIDENCE LEVEL VALUE FOR EACH ASSERTION PATTERN 

Same Not same 

 
 

Below Above 

 
 

In range Gap 
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However, by analysing the industrial case studies it was noticed that certain violations could be accepted, 

especially those related to QoS measures. To tackle this issue, two measures were taken, (1) add the possibility 

to adjust the confidence level, so that the user can specify a negative confidence value that it is yet acceptable 

and (2) define a total of four failing reasons, so that different failure patterns can be specified, each accepting 

certain deviations from the property to be asserted. An example for each failing reason for a below assertion 

pattern can be found in the figure below. 

 

FIGURE 10 THE FOUR FAILURE REASONS FOR A BELOW PATTERN 

When a below pattern is defined, values above the reference signal (drawn with a red line) result in a negative 

confidence value, i.e., the property defined in the oracle has been violated. This violation is then analysed 

against the failure patterns to decide whether it is acceptable or not. (1) is the least flexible failure pattern, a 

single violation makes the oracle fail. (2) accepts violations for a specific duration but fails afterwards. (3) 

accepts a determined number of violations, in a specified time window. (4) aims to detect constant 

degradation, allowing some violations as long as the overall is remains within the limits. At least one failing 

reason shall be specified, but the four types could be used.  

The concepts introduced above are modelled as illustrated in the figure below: 
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FIGURE 11 FAILURE PATTERN RELATED SECTION OF THE MODEL 

4.2. Handling uncertainty in organic test oracles 

One core problem of having organic oracles at operation-time for CPSoS is that CPSoS are inherent to 

uncertainty. For instance, in the context of Orona’s use-case, several uncertain problems need to be 

considered, such as, the weight that passengers have, the time they take to enter into the elevators or wrong 

installation usages (e.g., calling an elevator but later not entering). To handle uncertainty-related problem in 

organic test oracles, we employed uncertainty datatype libraries from SRL’s previous work UncerTum12, which 

implemented an uncertainty conceptual model named U-Model13 including three uncertainty libraries (i.e., 

Probability library, Vagueness library and Ambiguity library) that can facilitate specification of most 

uncertainties in CPS. This enables the usage of organic oracles at operation-time.  

The Probability library contains data types like Percentage and various probability distributions e.g Normal 

Distribution, which can specify uncertainties in CPSoS especially related to sensor measurement, and Poisson 

Distribution, which can specify the uncertain arrivals of passengers14. In some cases, it is not possible to specify 

uncertainties as probabilities. For example, QoS-based passenger's satisfaction defined in CIBSE Guide D15 is 

usually measured with fuzzy logic. Thus, data types related to fuzzy logic such as Fuzzy set and Fuzzy Interval 

in Vagueness library can be used. Similarly, the Ambiguity library was used for cases when probability and 

                                                      
12 Zhang M, Ali S, Yue T, et al. Uncertainty-wise cyber-physical system test modeling[J]. Software & Systems Modeling, 2019, 18(2): 1379-1418 

13 Zhang M, Selic B, Ali S, et al. Understanding uncertainty in cyber-physical systems: a conceptual model[C]//European conference on modeling foundations 

and applications. Springer, Cham, 2016: 247-264 

14 Sorsa J, Ehtamo H, Kuusinen J M, et al. Modeling uncertain passenger arrivals in the elevator dispatching problem with destination control[J]. Optimization 

Letters, 2018, 12(1): 171-185. 

15 Barney G. Transportation systems in buildings: CIBSE Guide D: 2010. London: Chartered Institution of Building Services Engineers, 2010 
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vagueness libraries are not adequate. For example, a specific traffic profile with a specific building 

configuration has an acceptable distribution of AWTs over a specific period (e.g., every 5 minutes) to achieve 

better user satisfaction. This means that AWTs per 5 minutes should not have too much uncertainty (e.g., 

AWTs per 5 minutes shouldn't change frequently and drastically), which can be measured with Shannon 

Entropy datatype in Ambiguity library.  

4.3. Integration with Adeptness Microservice template 

The organic oracles presented in this section must be able to be fully integrated into the Adeptness ecosystem. 

The test oracles require the values of the signals of the corresponding CPS in order to perform the assessment 

and, additionally, test oracles must provide the verdicts back to the infrastructure. As stated in the deliverable 

D1.2 Microservices interface definition these communications are carried out through the MQTT protocol, and 

the same approach will be used at all stages of the software development: SiL, HiL and operation. The figure 

below shows these communications.  

 

FIGURE 12 COMMUNICATIONS BETWEEN THE ADEPTNESS INFRASTRUCTURE AND THE ADEPTNESS MICROSERVICE 

First, the inputs for the test oracles are published through MQTT messages by the monitors. The microservice 

where this test oracle is executing, gets and parses the messages and provides the inputs to the organic test 

oracle that is executing. The oracle, in turn, performs the evaluation, and returns the verdict back to the 

microservice. Finally, the verdict is published through an MQTT message to the rest of the subsystems.  

The microservice is also responsible for providing the means of binding the inputs defined on the oracle to 

uniquely identifiable URNs and topics, as well as to externally configure the unique publication topics for the 

verdicts generated by oracles 

5. Pre-specification Test Oracles 

Another type of oracles used for testing software systems, as well as CPSs, is the so-called pre-specification 

test oracles. In such context, the SUT and the oracle have the same inputs, and provide an output. While the 

SUT provides the real test output, the test oracle provides the expected test output. Both outputs are later 

compared by using an organic test oracle (e.g., both outputs should be the same, the output of the SUT 

should be below the oracle output). Different versions of the pre-specification test oracles are available. 

Among them, in a DevOps context, where the software continuously evolves, the regression test oracles are 

the most well-known ones. In such cases, the pre-specification oracle is a previous version of the SUT. While 

this practice is well known, it poses significant challenges in the context of CPSs. The first one is that in the 
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context of CPSs, executing a test takes a long time. In these cases, the execution needs to be done twice (on 

the SUT and on a previous version of the SUT). The second one is that at operation-time, this is not possible 

unless a methodology similar to a digital twin, which should run in the cloud, is enabled. 

To solve this problem, in Adeptness we have used machine-learning algorithms as substitutes of the SUT, 

which make the execution of tests faster, and therefore scalable both at design-time as well as operation-

time. However, to ensure that such technology is capable of substituting the SUT, we have performed a 

preliminary experiment by using Orona’s use-case. 

5.1. Preliminary experimentation 
 

In this section we explain the preliminary experiment we carried out to assess the feasibility of using machine-

learning algorithms as substitutes of previous SUT versions, which would enable the algorithm to act as a 

regression oracle. This preliminary experimentation has been published in AST 202116. 

The software development process of Orona’s dispatching algorithm is shown in Figure XX. There are a total 

of three Design-Operation testing levels: Software-in-the-Loop (SiL), Hardware-in-the-Loop (HiL) and 

Operation. For testing at the SiL and HiL test level, two kinds of tests are carried out: (1) short-scenario tests 

and (2) full-day tests. The former validates specific functional properties of the system. The expected outcome 

of a test in this case is obtained by implementing some assertions. The latter mimic normal full-day scenarios. 

The expected test outcomes in this case relate to certain Quality of Service (QoS) measures over time obtained 

by re-executing the test in a regression test oracle. 

A test case in the context of Orona for testing a dispatching algorithm version refers to the following fields: 

- Building installation: It configures the environment of where the SUT is executed, and encompasses 

different fields (e.g., number of floors, number of elevators, elevators’ characteristics).  

- Test input (call list profile): a test input in this context refers to a file that includes a list of passengers. 

For each passenger, this file includes (1) the arrival time (i.e., when the passenger requests an 

elevator), (2) arrival floor, (3) destination floor, (4) weight of the passenger, (5) capacity factor by 

mass, (6) the loading time, (7) the unloading time and (8) information related to the behaviour of the 

passenger when not all elevators serve all floors. 

- Expected output: based on the input, what the test outcome should be. At unitary functional level 

tests, the expected output is typically related to a functional behaviour of the elevator (e.g., elevator 

number 1 attends calls from passengers 1 and 2, elevator number 2 attends a call from passenger 3). 

For long full-day tests, this is related to certain QoS metrics, which is addressed in this section. 

In this section we focus on the oracles applied for, what is known in Orona internally as “long full-day tests”.  

For these kinds of tests, the inputs encompass full-day passenger data simulating the passenger flow in a 

building. The expected output refers to a time series of QoS values over time. Typical QoS values refer to the 

Average Waiting Time (AWT) or the Average Time to Destination (ATTD). The most used QoS measure in 

Orona is the AWT because it is the most sensitive measure for a passenger to determine whether a system of 

elevators performs well or not17. For such full-day tests, these can be differentiated into two main groups: 

theoretical and real. 

                                                      
16 A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui and M. Arratibel. Using Machine Learning to Build Test Oracles: an Industrial Case Study on 

elevators Dispatching Algorithms. Automated Software Testing conference. 2021. 

17 G. Barney and L. Al-Sharif, Elevator traffic handbook: theory and practice. Routledge, 2015. 
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FIGURE 13 SOFTWARE DEVELOPMENT PROCESS OF ORONA’S DISPATCHING ALGORITHMS18 

On the one hand, theoretical passenger data-based test cases provide test inputs based on theoretical studies 

of passenger flows in buildings. An example of such test cases is shown in Figure 2, where a graph with the 

number of up calls, down calls and inter-floor calls in a time window of five minutes for a simulation of 13 

hours based on the Siikonen theory for a building of offices can be seen. On the other hand, Orona uses data 

obtained from real installations to test their dispatching algorithms in more realistic conditions. This helps with 

the validation of dispatching algorithms from several perspectives, e.g., the identification of certain patterns 

that were not considered in theoretical traffic profiles. 

 

FIGURE 14 A GRAPH SHOWING THE NUMBER OF UP CALLS (BLUE), DOWN CALLS (RED) AND INTER-FLOOR CALLS (YELLOW) IN A THEORETICAL TRAFFIC 

PROFILE 

5.1.1. Pre-specification test oracle for elevators dispatching algorithms 

based on machine-learning algorithms 
Figure 15 Overview of the approach at the SiL test level shows the overall architecture of the architecture we 

have developed to validate whether machine-learning algorithms are a good substitute of regression test 

oracles. 

                                                      

18 J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. P. Enoiu, A. Agirre, G. Sagardui, M. Arratibel, and O. Sellin. Towards a taxonomy for eliciting design-operation 

continuum requirements of cyber-physical systems. in 28th IEEE International Conference on Requirements Engineering, RE 2020, Zurich, Switzerland, 2020, 

2020. 
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FIGURE 15 OVERVIEW OF THE APPROACH AT THE SIL TEST LEVEL 

It has two main phases: (1) the training phase and (2) the testing phase. During the training phase, a machine 

learning algorithm is trained by using data from previous software versions, which is used by Orona to validate 

other versions of the software. The algorithm yields a model, which is used by DARIO (Dispatching Algorithm 

Oracle) in the testing phase. During the testing phase, we use Elevate to execute test cases. When the test 

has finished, Elevate provides a set of files, which are treated by DARIO to extract (1) the passenger traffic 

profile and (2) the AWT over the simulation time. The passenger traffic profile is used by the model predictor 

to predict the AWT over the simulation time. The AWT over the simulation time is used by the arbiter of 

DARIO to yield the overall verdict and a quantitative verdict over the time. 

Training phase 

The training phase in our approach aims at providing a machine-learning algorithm with labelled data to train 

it. During such phase, a machine-learning algorithm adapts some internal parameters based on training data 

so that it performs well on future unseen input data [6]. In Orona, the Verification and Validation activities are 

well documented, thus, obtaining the required data to train an algorithm is straightforward. 

We used the AWT to label a test as PASS or FAIL. The AWT can be a global value that measures the overall 

AWT for all passengers in the test input or a signal over the simulation time, indicating the AWT of the 

passengers in the test input for a specific time period. Elevate provides information of both. DARIO uses the 

AWT for a specific time period to determine a verdict. 

For training a machine-learning algorithm, we categorised the data into different domain-specific features 

related to passengers traffic data. As for the output feature, the AWT QoS metric is considered, as it is the 

measure that the dispatching algorithm under test used in this paper targets. All of them, for a time window 

of five minutes. We chose a five-minute time window based on the information provided by Elevate. A script 

was developed to automatically extract this data from a database where Orona saves all the test history. When 

the data was extracted, the training phase was launched by the script, using the MATLAB machine-learning 

toolbox. The regression learning algorithm yields a trained regression model, which can later be used in the 

testing phase to predict the AWT. 
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Usually, the passenger traffic data in the historical test database is not the same as the test input in the testing 

phase because when changes are made in the dispatching algorithm, these changes typically include new 

functionalities or bug corrections. Subsequently, in the test inputs used during the testing phase, testing the 

new functionality or a scenario that aims to trigger the fault is usually implemented. In addition, at the HiL test 

level, tests also might include scenarios where the test engineer tests the Human Machine Interface (HMI) of 

the system. In those cases, as the testing is manual, where by the system interacts with the tester, having the 

exact same test case is impossible. 

Testing phase 

When the regression learning algorithm is trained, it yields a trained machine-learning model, which is used 

in the testing phase. For the current implementation, this phase has four steps: 

The first step refers to test execution, where the dispatching algorithm is tested by using simulation-based 

testing, The second step refers to test data extraction, where the test results and other necessary data is 

extracted. The third step refers to prediction based on the regression model, which yields the expected AWT 

result. Lastly, the fourth step refers to the arbitration process, which compares the AWT obtained by the 

regression algorithm with the AWT estimated by the regression model by using an organic oracle (explained 

in Section 4). We now explain all these steps in further detail. 

a. Test execution: To execute a test, simulation-based testing is employed. As previously mentioned, 

the test can be executed at two distinct levels: (1) at the Software-in-the-Loop test level, where Elevate 

might be used and (2) at the Hardware-in-the-Loop test level, where the HiL test bench from Orona 

is used. 

 

FIGURE 16 THE THREE REASONS WHY A TEST CAN BE CATALOGUED AS FAIL (BLUE SIGNAL REFERS TO THE REFERENCE AWT AND ORANGE SIGNAL REFERS TO 

THE AWT OBTAINED BY THE SOFTWARE VERSION UNDER TEST) 

b. Test data extraction: After the test has been executed, the tool extracts the necessary data from the 

testing files yielded by the test execution tools. At both test levels, i.e., SiL and HiL, both files are the 

same, which allows better reusability of the implemented test data extraction functionality. 

c. Prediction: The data is sent to the regression model yielded during the training phase. This model 

makes the inference, which means it predicts for the test data, which is the reference AWT. This 

reference is later compared by the test arbiter in the fourth Step. 

d. Arbitration: The arbitration process compares the AWT obtained by the algorithm with the AWT 

predicted by the inference. The arbiter uses an organic oracle defined in the previous section. 

Basically, the oracle determines that the AWT of the new version of the algorithm should be below 

the yielded AWT. Furthermore, by discussing with engineers from Orona, we determined three failing 

reasons to catalogue a test as FAIL or as PASS, as discussed in 4.1.2.  Figure 16 The three reasons why 

a test can be catalogued as FAIL (blue signal refers to the reference AWT and orange signal refers 

to the AWT obtained by the software version under test) shows the three examples. 

The first reason might be that at certain point, the software version under test shows a high peak on the AWT 

measure. This is because at a certain point, probably due to a bug, at least one passenger was unattended 

for a long period of time. The second reason is because the AWT measure for the software version under test 

exhibits a value higher than the specified threshold for a long period of time. The last scenario is related to a 

constant degradation of the AWT value throughout all the steps of the execution. As explained in Deliverable 
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4.1 DSL for continuous validation of CPSoS, and in 4.1.2 Oracle definition, a numerical value of the verdict is 

yielded, and the test is catalogued as PASS or FAIL based on this value and the specified failing reasons. 

Implementation 

Since the goal was to perform a fast validation of the potential of machine-learning algorithms to assess their 

effectiveness, we implemented it in MATLAB. This tool also provides support for a wide variety of algorithms. 

Additionally, although the approach is generalisable to any regression machine-learning algorithm, our 

implementation was on top of the following ones: (1) Support Vector Machines (SVM), (2) Regression Decision 

Trees, (3) Ensemble, (4) Regression Gaussian Process (RGP) and (5) Stepwise Regression. The reason why 

these algorithms were chosen was (1) availability within the MATLAB framework and (2) appropriateness for 

our context in terms of prediction speed, training speed, memory usage and required tuning. 

The selected algorithms have a fast prediction and training speed (unlike other algorithms such as neural 

networks). In addition, these algorithms have a small memory usage, something important when deploying 

the oracles in operation integrated with the Adeptness microservice. Lastly, the selected algorithms require 

minimal tuning, something that is paramount to ease the transfer of the approach to practitioners. 

5.1.2. Empirical evaluation 
We now explain how we evaluated our approach. Our evaluation aims to answer the following Research 

Questions (RQs): 

- RQ1 – Training with theoretical data: Which machine learning algorithm yields the most accurate test 

verdicts when trained with theoretical passenger test data? 

- RQ2 – Training with real passenger data: Which machine learning algorithm yields the most accurate 

test verdicts when trained with real passenger test data? 

Experimental setup 

Case study: We used a real dispatching algorithm provided by Orona, named as Conventional Group Control 

(CGC) algorithm, which is the most used algorithm in Orona. Therefore, there were several versions of this 

algorithm available in Orona, which allowed us to have access to several sets of relevant test data for 

performing the experiments. In the evaluation, we used a complex building installation that Orona uses to 

validate dispatching algorithms, which is related to a real installation named the communication city, in 

Madrid. The building has a total of 10 floors and six elevators, each having a capacity of 1250 Kg weight and 

16 passengers. Another reason for choosing this building is that Orona has relevant data obtained from the 

real installation while in operation, which allowed us to answer RQ2. To train the machine learning algorithms 

of our oracles, we used available test data for testing a previous version of the CGC algorithm within the 

specific building. This data included ten theoretical passenger list test inputs and four real passenger list test 

input data. 

Evaluation metrics: Mutation testing was used to inject faults through the dispatching algorithm under test. 

This technique has been found to be a good substitute for real faults in the past [8]. The dispatching algorithms 

are programmed in C, thus traditional mutation operators for the C programming language were used. These 

mutations were introduced in a uniform manner throughout the different sections of the source code that are 

relevant in the simulation environment. A total of 99 mutants were generated. It is important to note that as 

simulation-based testing was used, what means that executing each mutant takes a long time. This number 

is similar or larger to other studies where simulation-based testing was used to evaluate testing approaches 
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19, 20, 21. From these 99 mutants, 18 were removed from the evaluation, because they crashed or passengers 

because passengers were not attended. In practice, both types of failures are easily detectable without the 

need of an oracle. Thus, we ended up with 81 mutants in our evaluation. The 81 mutants were reviewed by a 

domain expert to check that they were not semantically equivalent to the original program. 

When tests were executed, we obtained the AWT over the time using Elevate, the simulation tool used by 

Orona to validate elevators dispatching algorithms. Based on a similar work 22, we selected four measures to 

evaluate the quality of the test oracles: precision, recall, f1 and accuracy. Accuracy is especially important in 

our study as it is the only measure that considers True Negatives. In our context, classifying faults well is as 

important as classifying correct behaviour as correct. 

For each mutant and each test case, we considered the overall verdict returned by DARIO, catalogued either 

as “PASS” or “FAIL”. Additionally, we used the same passenger list with a regression test oracle (i.e., an original 

previous version under test), which is the current practice to determine if a test passes or fails by Orona. 

Similar to other works tackling the test oracle problem 23, the verdict provided by DARIO was considered a 

true negative (TN), a true positive (TP), a false negative (FN) or a false positive (FP) as defined below:  

 TN: Both the test oracle (i.e., DARIO) and the regression test oracle returned a “PASS” verdict.  

 TP: Both the test oracle (i.e., DARIO) and the regression test oracle returned a “FAIL” verdict.  

 FN: The test oracle (i.e., DARIO) returned a “PASS” and the regression test oracle returned a “FAIL”. 

 FP: The test oracle (i.e., DARIO) returned a “FAIL” and the regression test oracle returned a “PASS”.  

The tests were executed in Elevate instead of in the HiL due to practicality (i.e., if the tests were executed using 

the HiL test bench, the experiments would take around 2 years).  

A total of four experimental scenarios were designed for answering the two RQs:  

 Scenario 1: To answer the first RQ, we first used test cases that involve theoretical test inputs. These 

test inputs were automatically generated by Elevate and are based on a study performed by Siikonen 
24. In total, 10 of these test cases were used. We employed the 10-fold cross validation to validate 

DARIO along with all the selected machine-learning algorithms. 

 Scenario 2: We used an additional scenario to answer the first RQ. The same type of test cases were 

used for training, but for testing, test cases obtained from the real installation were used. This scenario 

would emulate (1) how the theoretical passenger data performed in order to train the algorithms 

during validation when using data extracted from operation and (2) how the theoretical passenger 

data perform for training the algorithms when the oracle is used in the real installation.  

 Scenario 3: To answer the second RQ, we used test cases obtained with data extracted from the real 

installation in operation. In total, four of these test cases were used. We thus employed the 4-fold 

cross validation to validate DARIO along with all the selected machine-learning algorithms. 

                                                      

19 R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test generation and test prioritization for simulink models with dynamic behavior,” IEEE Trans. 

Software Eng., vol. 45, no. 9, pp. 919–944, 2019. [Online]. Available: https://doi.org/10.1109/TSE.2018.2811489 

20 A. Arrieta, S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria, and G. Sagardui, “Pareto efficient multi-objective black-box test case selection for simulation-

based testing,” Information & Software Technology, vol. 114, pp. 137–154, 2019. [Online]. Available: https://doi.org/10.1016/j.infsof.2019.06.009 

21 A. Arrieta, S. Wang, A. Arruabarrena, U. Markiegi, G. Sagardui, and L. Etxeberria, “Multi-objective black-box test case selection for cost-effectively testing 

simulation models,” in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’18. New York, NY, USA: ACM, 2018, pp. 1411–1418. 

[Online]. Available: http://doi.acm.org/10.1145/3205455.3205490  

22 A. E. Genc¸, H. Sozer, M. F. Kırac¸, and B. Aktemur, “Advisor: An ad- ̈  justable framework for test oracle automation of visual output systems,” IEEE Transactions 

on Reliability, 2019. 

23 W. K. Chan, J. C. Ho, and T. Tse, “Finding failures from passed test cases: Improving the pattern classification approach to the testing of mesh simplification 

programs,” Software Testing, Verification and Reliability, vol. 20, no. 2, pp. 89–120, 2010. 

24 M.-L. Siikonen,“On traffic planning methodology,” Elevator technology, vol. 10, pp. 267–274, 2000. 

http://doi.acm.org/10.1145/3205455.3205490
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 Scenario 4: Similar to Scenario 2, we used an additional scenario to answer the second RQ. In this 

case, we used the same test cases as in Scenario 3 to train the algorithms, but for testing we used 

the ten theoretical passenger-based test cases. 

 

Analysis of the results and discussion 

The Table below summarizes the obtained results for the four scenarios designed to answer the RQs of our 

preliminary evaluation. The first RQ aimed at assessing the performance of the machine-learning algorithm 

when trained with theoretical passengers. Scenario 1 used a 10-fold cross validation with 10 theoretical 

passenger data. In terms of precision, SVM was the technique outperforming the remaining algorithms, 

followed by regression tree and stepwiselm. As for the recall measure, regression tree and ensemble 

performed best, followed by SVM. In terms of accuracy and F-measure, SVM performed best, although the 

results by regression tree were close in both cases, unlike the remaining three machine learning algorithms, 

which dropped below 0.8 in terms of both accuracy and F-measure. 

 

Scenario Metrics SVM Regression 

tree 

Ensemble RGP Stepwiselm 

Scenario 1 Precision 0.89 0.83 0.68 0.76 0.82 

Recall 0.88 0.89 0.89 0.78 0.78 

Accuracy 0.89 0.87 0.69 0.71 0.79 

F-1 0.86 0.83 0.70 0.68 0.74 

Scenario 2 Precision 0.74 0.80 0.41 0.61 0.41 

Recall 0.80 0.75 0.86 0.86 0.85 

Accuracy 0.74 0.75 0.39 0.58 0.38 

F-1 0.70 0.69 0.45 0.59 0.44 

Scenario 3 Precision 0.60 0.76 0.29 0.59 0.70 

Recall 0.94 0.98 1.00 0.88 0.83 

Accuracy 0.59 0.79 0.37 0.58 0.74 

F-1 0.64 0.80 0.44 0.62 0.70 

Scenario 4 Precision 0.25 0.25 0.25 0.30 0.25 

Recall 1.00 1.00 1.00 0.99 1.00 

Accuracy 0.25 0.25 0.25 0.37 0.28 

F-1 0.39 0.39 0.39 0.45 0.40 
TABLE 2: SUMMARY OF RESULTS FOR THE FOUR EXPERIMENTAL SCENARIOS 

 

In the second scenario, ten theoretical passenger data were used for training, whereas four real-world 

operational data for testing. Regression tree performed best in terms of average precision, followed by SVM. 

The results for ensemble RGP and Stepwise algorithms were quite low in terms of the average precision. While 

these three algorithms slightly outperformed SVM and regression tree for the recall metric, their accuracy and 

F-measure were low as compared with SVM and Regression tree.  

Overall, the results for all the four measures in Scenario 2 were lower than those shown in Scenario 1. We 

conjecture that this is because the difference between the types of passenger traffic flow in the test cases that 

are based on theoretical traffic profiles and the ones obtained from the real installation. Our hypothesis is that 

the theoretical passenger profiles do not explore areas which the real passenger profiles actually do and vice-

versa.  
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The second RQ aimed at answering how the performance of the different machine-learning algorithms when 

trained with real passenger data-based test cases was. Scenario 3 in Table 2 shows the results for the 4-fold 

cross validation when using the real passenger data-based test cases both, for training and for testing. In this 

case, regression tree performed best in terms of precision, accuracy, and F-measure. In addition, with a recall 

of 0.98, the regression tree algorithm was the second best, after ensemble. Nevertheless, the precision, 

accuracy and F-measure values for ensemble were all below 0.5, which means that this algorithm had a high 

number of false positives. 

Scenario 4 also used real passenger data-based test cases to train the machine learning algorithms. Although 

all algorithms performed well in terms of recall, meaning that they produced none or a low number of false 

negatives, their results in terms of precision, recall and accuracy were below 0.3. This is due to a high number 

of false positives.  

The hypothesis in this case is similar to the one for RQ1. The traffic profiles obtained from the real building 

installation might not exercise areas or produce situations that are considered in the theoretical traffic profiles. 

This makes it difficult for the regression algorithms to accurately predict the reference AWT value.  

Conclusion of the preliminary experiment 

This preliminary experiment was carried out to assess whether machine learning algorithms are appropriate 

substitute of traditional regression oracles. The results suggest that they are at least for one of the use-cases 

from the Adeptness project, especially if they are trained with the same type of passenger files (i.e., real, or 

theoretical). We called this Oracle DARIO because it was developed thinking on the Dispatching algorithms 

from Orona. However, the algorithm is generalizable to any kind of Cyber-Physical System. Compared with 

the traditionally used regression oracles, which have several disadvantages, DARIO trains machine-learning 

algorithms with previous test data. This training takes only a few seconds (always less than 3 seconds), whereas 

executing the regression test oracle takes minutes or hours at SiL (depending on the length of the test case), 

and hours or days at HiL (not being possible to correctly perform some tests, such as those involving HMI). In 

our evaluation, where an industrial dispatching algorithm from Orona was used, the accuracy of the proposed 

test oracle when labelling tests as PASS or FAIL ranged between 0.79 and 0.87, which is competent enough 

to conclude that machine-learning algorithms are appropriate to substitute regression test oracles, and 

therefore, be a potential solution of such kind of oracles for operational testing of CPSoS. 

5.2. Pre-specification oracles in the ADEPTNESS context 

The aforementioned studies have provided valuable insight into pre-specification oracles, which has been 

applied to the ADEPTNESS context. Two design principles have been followed to do so: To implement the 

pre-specification oracles as an extension of organic oracles, and to separate the computation of the training 

and the inference phases. In the current section we explain these design principles. 

5.2.1. Machine Learning to learn unobserved signals 
Pre-specification oracles are designed to take advantage of the work done in organic ones, so that expert 

designed rules can be combined with rules learnt from data. ML models are used to predict unobserved 

signals by using supervised learning methods, based on which, the assertion rules can be applied. This design 

allows the best of both worlds, the reliability (based on the explainability) of expert designed assertions and 

the flexibility of ML methods. 
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FIGURE 17 USING ML TO INFER UNOBSERVED SIGNALS 

As shown in 4 Organic oracles at operation, organic oracles rely on several monitors that reflect actual physical 

measurements made by the CPS in order to reach their verdicts. On the other hand, the assertions made by 

pre-specification oracles, in addition to physical monitors, may also depend on regression monitors. As can 

be seen in Figure 17, ML models are used to infer regression monitors from other monitors. These monitors 

can be used to represent unobserved variables of the CPS, or to model complex relationships between 

variables. 

5.2.2. Differentiating the training phase from the inference phase 
As in other supervised learning scenarios, ML models must be learned from previous observations, in the so-

called training phase. Depending on the ML model used this training phase requires more or less calculations, 

although in most scenarios is considered a computationally demanding task. Nevertheless, once the ML 

model is trained, the inference process is less resource intensive. 

Being one of the main limitations of edge devices the lack of computational power, we propose a two-step 

process, where, first, we learn the model from the training data in computationally capable resource, and 

then, we use this model in the edge devices in order to infer a regression monitor, and, based on the defined 

assertions, deliver the verdict of a possible malfunction of the CPSoS.  
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FIGURE 18 TRAINING AND INFERENCE PHASES OF THE SUPERVISED LEARNING PROCESS 

Figure 18 shows this two-step computing process. In this example, there are two physical monitors on the 

edge device, C and D, from which the regression monitor E is being inferred. The ML model that is used to 

perform the inference has been trained using previously gathered data in a computationally capable resource. 

When collecting these data, it must be labelled with the desired output of the regression monitor E. If the 

regression monitor E represents a signal of a sensor present in the SiL or HiL phases of the testing, it can be 

used to label the training data, to then, at operational time, mimic the output of the sensor, essentially 

eliminating the need for a sensor or other direct observation method. 

For the training phase, as a computationally capable resource the Adeptness cloud infrastructure is provided 

as well as means to parametrize and configure the training phase. However, if the provided infrastructure is 

not enough for the particular requirements of the ML model due to its complexity, any previously trained 

model, compatible with the Adeptness inference process, is allowed.   

5.2.3. Pre-specification oracle’s Model 
As stated previously, pre-specification oracles take advantage of the organic oracles. The following is the 

section of the model that gathers the part regarding the pre-specification oracles. As can be seen, the 

InferMonitoringFile and the ModelFile components are added at the same level as the Oracle definition file 

and MonitoringFile. The InferMonitoringFile is composed of the MonitoringInferVariables components and a 

ModelFile. MonitoringInferVariables has the following attributes: a name, a model, a maximum and a minimum 

value, and a Sig_type. The ModelFile component imports a MonitoringFile and could be composed by various 

NonTrainableModels as well as TrainableModels. The former has the following attributes: a name, a variable’s 

list, and a model. The latter, on the other hand, has also a name and a variable’s list attributes, but also, a 

dataFile and is composed of a Layer, and this, in turn is composed by a DenseType component. This model 

enables the definition of trainable models, as well as the application of previously trained models.  
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FIGURE 19 THE SECTION OF THE MODEL CORRESPONDING TO THE PRE-SPECIFICATION ORACLES 

5.3. Integration with Adeptness microservice template 

The communications among the organic test oracle and the Adeptness ecosystem were presented in the 4.3 

Integration with Adeptness Microservice template. Pre-specification oracles, as an extension of organic test 

oracles, behave similarly. The only difference is that, once the sensor inputs are parsed, the inference is 

performed to obtain all the regression monitors before any evaluation is carried out.  

The figure below shows how pre-specification oracles are integrated into the Adeptness ecosystem. The stage 

in pink is the only difference with regards to the organic test oracles. 

 

FIGURE 20 INTEGRATION OF THE PRE-SPECIFICATION TEST ORACLES WITH THE ADEPTNESS ECOSYSTEM 
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6. Metamorphic-based test oracles 

In order to evaluate the feasibility and effectiveness of metamorphic testing, similar to the previous section, 

we performed some preliminary experiments on Orona’s CGC elevator dispatching algorithm, which is the 

algorithm used in most of the company’s multi-elevator installations. We published these preliminary 

experiments in our ISSRE 2020 article.25 

6.2. Testing interface 

For the metamorphic oracle, we decide to abstract the scenarios from the elevation domain as test cases with 

two complex inputs and a single output. The inputs of a test case are: 

- The list of available elevators (variable number of elevators) and their initial position (floor). 

- The passengers list, which is a variable length list in which each passenger has an arrival time, source 

floor, destination floor, and weight. 

Every other parameter from the elevation scenarios is always kept at its default value for simplicity. 

Our MRs are defined based on non-functional properties (the QoS metrics) of the system, which in practice 

makes this approach similar to performance metamorphic testing.  

However, in contrast to previous work on performance metamorphic testing, our aim is detecting functional 

failures (i.e., incorrect, or inefficient choices from the dispatching algorithm) rather than performance bugs. 

Each Metamorphic Relation (MR) we define will only consider a single QoS metric obtained by the system 

during the test execution as an output. Our MRs use either of the following QoS measures: 

- Average Waiting Time (AWT): The average time from the moment a landing call is issued until an 

elevator stops to attend the call, measured in seconds.  

- Total Distance (TD): The sum of the distances traversed by all the elevators of the building, measured 

in floors. 

- Total Movements (TM): The count of all the movements (i.e., engine start-ups) of all the elevators of 

the building.  

6.3. Metamorphic Relations 

With the specified interface, we proposed the following Metamorphic Relation Input Patterns (MRIPs) for our 

MRs: 

- MRIP1 Additional calls: This MRIP consists in appending an additional passenger call to the follow-up 

test case, resulting in generally worse QoS measures due to the increased workload (additional 

passenger). 

- MRIP2 Additional elevators: This MRIP consists in enabling one or more additional elevators in the 

follow-up test case, resulting in generally better QoS measures due to the system having more 

resources (elevators) to work with for the same workload (passengers list). 

- MRIP3 Initial position change: This MRIP consists in changing the initial positions of the elevators 

without changing their number, resulting in generally similar QoS measures due to the initial positions 

                                                      

25 Ayerdi, J., Segura, S., Arrieta, A., Arratibel, G. S., & Arratibel, M. (2020, October). QoS-aware metamorphic testing: An elevation case study. In 2020 IEEE 

31st International Symposium on Software Reliability Engineering (ISSRE) (pp. 104-114). IEEE. 
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having a limited impact on the scenario (specifically, we define an upper bound on the difference 

between the QoS measures obtained in the source and follow-up executions). 

The following figure depicts a source test case on the left, and a follow-up test case for MRIP3 (Initial position 

change) on the right. Every parameter not mentioned in the MRIPs is always kept identical in the source and 

follow-up test cases. 

 

FIGURE 21 MRIP3 INITIAL POSITION CHANGE INPUT TRANSFORMATION 

The specific MRs were defined with the help of a domain expert in order to ensure their soundness. In practice, 

however, these MRs could still yield false positives. This is due to the nature of performance testing oracles 

such as these MRs: The inherent non-determinism of the obtained QoS measures (e.g., simulation/sensor 

inaccuracies), as well as the approximate nature of some of the system’s algorithms (multi-elevator dispatchers 

cannot always issue optimal dispatches). 

In order to mitigate this issue, we define some tolerance thresholds that allow small deviations from the QoS 

measure expected in the follow-up test execution. The following image depicts the actual threshold of QoS 

values from the follow-up test execution that an MR would consider correct (in green, passing verdict) and 

incorrect (in red, failing verdict). The orange vertical lines show the exact frontier values when evaluating the 

MR strictly, and the red vertical lines show the actual frontier values after adding a tolerance threshold to the 

MR. 

 

FIGURE 22TOLERANCE THRESHOLDS FOR METAMORPHIC ORACLES 

Furthermore, in order to differentiate slight deviations and huge differences between the expected value of a 

QoS metric and the actual value, all of our MRs provide a quantitative verdict which indicates the severity of 

the failures. The quantitative verdict can be calculated as the difference between the actual and closest 

acceptable QoS measure obtained by the follow-up test case. These quantitative verdicts can be used to 
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direct the attention of the test engineers towards the most severe failures, which generally should be 

prioritized. 

6.4. Experimental setup 

In order to evaluate the effectiveness of GAssertMRs, we performed an experiment which uses Orona’s 

Conventional GroupControl (CGC) elevator dispatching algorithm as the system under test. 

In order to perform this evaluation, we generated 89 mutants of the algorithm by injecting operator mutations 

to its C source code, which we used to obtain faulty test executions for the tool. In turn, the correct executions 

were obtained by executing the original dispatching algorithm, which has already been thoroughly validated 

in the building which we use to execute our evaluation. 

The test cases were generated based on a template project of a real building with 10 floors and up to 6 

elevators. For each test case, the number of available elevators, their initial positions, and the passengers 

which arrive at the building are randomly generated. In total, we generated 1340 distinct test cases, each of 

which was executed on all the 90 system variants (the original system and the 89 mutants). 

6.5. Experimental results 

After executing the test cases, all of the proposed MRs combined killed 74 out of 89 mutants, which resulted 

in a mutation score of 83%. Nevertheless, the analysis of each individual Metamorphic Relation (MR) revealed 

that there is a great disparity between their performances. The original dispatcher was also verified with the 

proposed MRs and the same test cases, and none of the metamorphic tests yielded any false positives for it. 

The following table shows the mutation scores of each individual MR, as well as the aggregate results for each 

MRIP and the global score: 

TABLE 3 SUMMARY OF THE EXPERIMENTAL RESULTS FOR THE METAMORPHIC ORACLES 

Metamorphic Relation Mutation Score 

MRIP1 MR1AWT 55.1% 78.8% 83.1% 

MR1TD 74.2% 

MR1TM 56.2% 

MRIP2 MR2AWT 57.3% 59.6% 

MR2TD 14.6% 

MR2TM 5.6% 

MRIP3 MR3AWT 14.6% 46.1% 
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MR3TD 40.4% 

MR3TM 4.5% 

 

These results show that MR1TD obtained the highest mutation score by a wide margin, while others 

MR2AWT, MR1TM, MR1AWT and MR3TD also obtained good scores. These results seem to indicate that only a few MRs 

are needed in order to obtain the best results, while others seem to be almost useless. 

Regardless, we conclude that the metamorphic-based test oracles we developed in these experiments are 

sufficiently cost-effective for them to be used in practice. The main drawback of this approach is its high cost 

due to having to execute multiple test cases for the oracle. However, in our preliminary experiments, we 

discovered that the MRs we defined could obtain a high (83%) mutation score with no false positives. 

Furthermore, these oracles have the additional advantage of being highly reusable, since they tend to be less 

sensitive to configuration or environmental changes than regular oracles because the outputs of follow-up 

test cases are evaluated against those observed in the source test cases26. 

7. Summary 

In this Deliverable we have shown how the most typical test oracles can be applied at the design-operation 

continuum of CPSs. Specifically, we have tackled the following aspects: 

1) We have analysed how each of these oracles can be integrated with different adeptness 

microservices.  

2) We have analysed how the test oracles can deal with the inherent uncertainty at which CPSs are 

exposed to. Specifically, we have incorporated three kind of uncertainties in the organic test oracles. 

3) Pre-specification test oracles need to execute the test both in the version under test and in a previous 

version. Since this is not feasible at operation-time, we have explored the use of machine-learning 

algorithm to tackle such problem. 

4) Lastly, we have explored the application of metamorphic testing for those situations at which 

determining the outcome of the CPS is unfeasible. 

To validate the proposed approaches, we have carried out a series of experimental scenarios in a small-scale 

experiment using Orona’s use-case. During other Work Packages, we will explore the application of such test 

oracles in both industrial use-cases and by carrying out a larger scale experimental scenarios. 

 

  

                                                      

26 Segura, S., Troya, J., Durán, A., & Ruiz-Cortés, A. (2017, May). Performance metamorphic testing: Motivation and challenges. In 2017 IEEE/ACM 39th 

International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER) (pp. 7-10). IEEE. 
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8. Risk Register 

Major risks were not identified.  
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9. Quality Assurance 

The executive board is the body for quality assurance. The procedure for review and approval of deliverable 

is described in Deliverable Report D8.1 – “Project handbook”. The quality will be ensured by checks and 

approvals by WP Leaders as part of the executive board (see front pages of all deliverables). 
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