

ADEPTNESS – Design-Operation Continuum Methods

for Testing and Deployment under Unforeseen

Conditions for Cyber-Physical Systems of Systems

EUROPEAN COMMISSION

Horizon 2020

H2020-ICT-01-2019

GA No. 871319

Deliverable No. ADEPTNESS D4.5

Deliverable Title Report on traceability mechanism from operational data to

development lifecycle

Deliverable Date 2022-03-31

Deliverable Type Report

Dissemination level Public

Written by UES 2021-10-31

Checked by MGEP, EGM 2022-04-06

Approved by Executive board

Status V1.4 2022-04-26

Ref. Ares(2022)3269940 - 27/04/2022

H2020-ICT-01-2019 – 871319 – ADEPTNESS: Design-Operation Continuum Methods for Testing and

Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems

Acknowledgement

The author(s) would like to thank the partners involved with the project for their valuable comments on

previous drafts and for performing the review.

Project partners

1 – MGEP – Mondragon Goi Eskola Politeknikoa – ES

2 – ORO – Orona S. Coop – ES

3 – UES – Ulma Embedded Solutions S. Coop – ES

4 – SRL – Simula Research Laboratory S. Coop – NO

5 – BT – Bombardier Transportation Sweden – SE

6 – IKL – Ikerlan S. Coop – ES

7 – EGM – Easy Global Market SAS – FR

8 – MDH – Maelardalens Hoegskola – SE

9 – TUW – Technische Universitaet Wien – AT

Disclaimer:

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 871319.

Document Information

Additional author(s) and contributing partners

Document Change Log

Exploitable results

Name Organisation

Sergio Rodríguez UES

Name Date Comments

V0.1

V1.0

V1.1

V1.2

V1.3

V1.4

2021-10-31

2022-03-09

2022-03-29

2022-04-07

2022-04-11

2022-04-26

Initial draft

Submitted to review

Restructured

MGEP, EGM reviews

MGEP, EGM reviews

MGEP review

Exploitable results Organisation(s) that can exploit the result

OSLC Bridge Tool
UES

Contents

1 PURPOSE OF THE DOCUMENT .. 8

1.1 DOCUMENT STRUCTURE ... 8

1.2 DEVIATIONS FROM THE ORIGINAL DESCRIPTION IN THE GRANT AGREEMENT ANNEX 1 PART A 8

1.2.1 Description of work related to deliverable in GA Annex 1 – Part A .. 8

1.2.2 Time deviations from original planning in GA Annex 1 – Part A .. 8

1.2.3 Context deviations from the original plan in GA Annex 1 – Part A .. 8

2 INTRODUCTION .. 9

3 OVERVIEW .. 10

4 BACKGROUND AND MOTIVATION ... 11

4.1 BACKGROUND .. 11

4.2 MOTIVATION.. 11

4.3 OSLC (OPEN SERVICES FOR LIFECYCLE COLLABORATION) .. 11

4.3.1 Definition ... 11

4.3.2 Organization .. 11

4.3.3 Open specifications ... 11

4.3.4 Eclipse Lyo ... 11

4.3.5 Technologies .. 12

4.3.6 RDF (Resource Description Framework)... 12

4.3.7 Traceability ... 12

4.3.8 Domains ... 13

5 TOOLCHAIN ... 16

5.1 DOCKER ... 17

5.1.1 Overview ... 17

5.1.2 Usage in OSLC Bridge .. 17

5.2 JAZZ TECHNOLOGY PLATFORM .. 17

5.2.1 Overview ... 17

5.2.2 Platform .. 17

5.2.3 Usage in OSLC Bridge .. 17

5.3 RTC (RATIONAL TEAM CONCERT™) .. 19

5.3.1 Overview ... 19

5.3.2 Collaboration and integration across the development lifecycle .. 20

5.3.3 Process configuration and customization ... 20

5.3.4 RTC Interfaces ... 20

5.3.5 Usage in OSLC Bridge .. 20

5.4 STELLIO / NGSI-LD ... 21

5.4.1 Overview ... 21

5.4.2 NGSI-LD Data Model .. 21

5.4.3 NGSI-LD Mapping in Stellio .. 22

5.4.4 Usage in OSLC Bridge .. 22

5.5 MAVEN .. 23

5.5.1 Overview ... 23

5.5.2 Usage in OSLC Bridge .. 23

5.6 OPENAPI .. 24

5.6.1 Overview ... 24

5.6.2 YAML ... 24

5.6.3 Swagger .. 24

5.6.4 Swagger UI framework ... 24

5.6.5 OpenAPI Generator (Swagger Codegen) .. 24

5.6.6 Usage in OSLC Bridge .. 25

5.7 ECLIPSE LYO .. 30

5.7.1 Overview ... 30

5.7.2 Lyo SDK ... 30

5.7.3 Usage in OSLC Bridge .. 30

5.8 JERSEY .. 31

5.8.1 Overview ... 31

5.8.2 Usage in OSLC Bridge .. 31

5.9 SPRING BOOT ... 31

5.9.1 Overview ... 31

5.9.2 Spring framework ... 31

5.9.3 Spring Boot solution .. 31

5.9.4 Usage in OSLC Bridge .. 31

5.10 JUNIT ... 31

5.10.1 Overview ... 31

5.10.2 Usage in OSLC Bridge .. 32

5.11 SONARQUBE ... 32

5.11.1 Overview ... 32

5.11.2 Usage in OSLC Bridge .. 32

6 OSLC BRIDGE .. 33

6.1 OVERVIEW ... 33

6.2 ENVIRONMENTS .. 34

6.2.1 Local Development Environment ... 34

6.2.2 Final environment .. 34

6.3 ARTEFACTS .. 35

6.4 ARCHITECTURE .. 36

6.4.1 Spring Boot (Spring.io) .. 36

6.4.2 Interface .. 36

6.4.3 OSLC Bridge Business .. 37

6.5 VALIDATION MODEL .. 40

6.5.1 Overview ... 40

6.5.2 Entities ... 40

6.6 OPERATION ... 42

6.6.1 Setup ... 42

6.6.2 Notification... 43

6.6.3 Traceability ... 45

6.7 BUILD ... 46

6.8 DEPLOY ... 47

7 SUMMARY ... 50

8 RISK REGISTER ... 51

9 REFERENCES ... 52

10 QUALITY ASSURANCE .. 53

11 ACKNOWLEDGEMENTS ... 54

List of figures

Illustration 1. OSLC Bridge connections. ... 10

Illustration 2. Linked Lifecycle Data OSLC. ... 12

Illustration 3. OSLC Requirements Management. .. 14

Illustration 4. OSLC Change Management Overview.. 14

Illustration 5. OSLC RM Domain Resources... 15

Illustration 6. Toolchain. ... 16

Illustration 7. Development tools and environments. ... 16

Illustration 8. Jazz Team Server login. .. 19

Illustration 9. Rational Team Concert flow [6]. ... 20

Illustration 10. Local development environment.. 34

Illustration 11. Final environment. .. 35

Illustration 12. OSLC Bridge architecture. .. 36

Illustration 13. Validation model. ... 40

Illustration 14. Testcase with verdict as parameter. .. 41

Illustration 15. Testcase based model. ... 45

Illustration 16. OSLC Bridge running from CLI. .. 46

Illustration 17. OSLC Bridge running from IDE. .. 47

List of tables

Table 1. Link types ... 13

Table 2. OSLC Domains ... 13

Table 3. NGSI-LD entity ... 21

Table 4. NGSI-LD property ... 21

Table 5. NGSI-LD relationship ... 22

Table 6. Stellio NGSI-LD Context broker ... 23

Table 7. Adeptness OSLC Bridge methods. ... 30

Table 8. OSLC Bridge dependencies ... 30

Table 9. OSLC Bridge tests ... 32

Table 10. Ubuntu server .. 34

Table 11. Developed artefacts .. 36

Table 12. RTCUtils methods ... 38

Table 13. OSLC Bridge Factories ... 38

Table 14. StellioUtils methods. ... 39

Table 15. followRelations method ... 39

Table 16. Mapping Adeptness model with OSLC Domain ... 41

Table 17. Mapping Adeptness model with OSLC Domain ... 41

Table 18. Setup RTC. .. 42

Table 19. Setup Stellio. .. 42

Table 20. OSLC attributes... 45

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 8 / 54

1 PURPOSE OF THE DOCUMENT

The purpose of this document is define the traceability mechanism from operational data to development

lifecycle using the developed OSLC Bridge.

1.1 Document structure

- Section 2 presents the Introduction.

- Section 3 provides the Overview.

- Section 4 presents an introduction to the background and motivation along with the OSLC

description.

- Section 5 explains the toolchain involved in the development and exploitation of the OSLC Bridge.

- Section 6 presents the OSLC Bridge along with different environments, developed artefacts and the

OSLC Bridge’s flow.

- Section 7 provides the summary

- Section 8 provides the risk register.

- Section 9 presents the references.

- Section 10 presents the quality assurance.

- Section 11 provides the acknowledgement.

1.2 Deviations from the original Description in the Grant Agreement Annex 1 Part A

1.2.1 Description of work related to deliverable in GA Annex 1 – Part A

There are no deviations with respect to the work of this deliverable.

1.2.2 Time deviations from original planning in GA Annex 1 – Part A

Deliverable date was initially delayed from M24 (2021-12-31) to M27 (2022-03-31) by means of an amendment.

Moreover, due to major revision request, four additional week delay has been added (including two week

Easter holidays period).

1.2.3 Context deviations from the original plan in GA Annex 1 – Part A

There are no deviations from Annex 1.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 9 / 54

2 INTRODUCTION

In the operation of CPSoS, unexpected events and unforeseen situations can happen. In this context, it is

important to know which lifecycle artefacts are affected by situations that may occur at develop or operation

time to reduce the time spent in impact and traceability analysis.

This task aims to focus on the traceability of the operational part with lifecycle artefacts. This enables tracing

operational data given during a determined time window with lifecycle artefact by employing the OSLC

standard to this end.

More information about OSLC in the section 4.3 OSLC (Open Services for Lifecycle Collaboration).

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 10 / 54

3 OVERVIEW

The traceability in the context of the Adeptness project is realized through the OSLC Bridge. The OSLC Bridge

is an Adeptness-specific implementation bringing together OSLC world and Adeptness NGSI-LD defined

entities, microservices, attributes and resources.

More information about OSLC and NGSI-LD tools in D5.2_Toolchain deliverable.

The OSLC Bridge is a connector between OSLC (Open Services for Lifecycle Collaboration) and Stellio Context

Broker.

- OSLC defines a set of specifications that enable integration of software development and provides

the OSLC providers access to RM (Requirements Management), AM (Architecture Management),

CCM (Configuration Management) and QM (Quality Management) domains. More information of

those domains in section 4.3.8 Domains.

- Stellio is a context broker that implements a NGSI-LD specification. This context broker contains the

definition of Adeptness Validation Model.

Illustration 1. OSLC Bridge connections.

The overall ecosystem does not only manage the CPSoS seamless interoperability, but also enables lifecycle

collaboration, from requirements management, and design, to verification and validation artefacts. This

collaboration provides a complete picture of the product lifecycle management and application lifecycle

management, easing the traceability from conception to runtime execution.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 11 / 54

4 BACKGROUND AND MOTIVATION

4.1 Background

Standardised OSLC APIs often allow vendors to provide a fully supported integration with many other OSLC

compliant out of the box tools.

An OSLC integration can be performed not only at the level of tool data models but also at the level of the

workflow involving those tools.

This deliverable presents an OSCL bridge for collecting validation results and triggering issues by means of

OSLC standard.

4.2 Motivation

The OSLC standard selection has been motivated by the experience that ULMA Embedded Solutions has in

the management and development of projects under the OSLC standard, specifically under the Jazz Team

Server tool.

4.3 OSLC (Open Services for Lifecycle Collaboration)

4.3.1 Definition

OSLC [1] is a set of defined specifications that allow the integration of software development. OSLC is

constantly evolving in areas such as Product Lifecycle Management (PLM), Application Lifecycle Management

(ALM), IT Operations and more.

4.3.2 Organization

OSLC initiative is split up into different OASIS TC (Organization for the Advancement of Structured Information

Standards Technical Committees). For a context of a specific part of the lifecycle exists an OASIS Technical

Committee that defines developments specifications.

A Core technical committee defines a common specification that is extended in turn by each lifecycle technical

committee.

4.3.3 Open specifications

The OSLC initiative is open to participate in the specification through OASIS Technical Committees.

Participants who want to take part in the especification, have to sign the Intellectual Property Rights policies

in order to ensure irrevocability.

4.3.4 Eclipse Lyo

The Eclipse Lyo [2] project is a Java reference implementations for OSLC standard. It is an open-source project

providing consumer and provider SDKs, reference implementations, samples and test suite. Likewise, Eclypse

Lyo enables the interoperability of services, products, and other distributed network resources.

The promotion of the use of Linked Data principles along with the OSLC standard for publishing lifecycle are

part of the goals of the Eclipse Lyo project. The open OASIS OSLC standard is based on RESTful architecture

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 12 / 54

and Linked Data principles, such as those defined in the RDF family of specifications, and the W3C Linked

Data Platform.

Illustration 2. Linked Lifecycle Data OSLC.

4.3.5 Technologies

These are some technologies involved:

- W3C Resource Description Framework (RDF)

- W3C Linked Data that is used to define the OSLC resources as RDF properties

- REST operations on resources that are performed using HTTP connections.

Hinging on afore mentioned technologies OSLC is capable of enabling integration at data level via links

between related resources.

4.3.6 RDF (Resource Description Framework)

RDF [3] defines a standard model for data interchange on the World Wide Web. The RDF standard defines

features to facilitate data merging, and it specifically supports the evolution of schemas over time without

requiring all the data consumers to be changed.

4.3.7 Traceability

Aiming at incorporating the traceability mechanism from operational data to development lifecycle, the OSLC

Bridge makes use of OSLC as it defines a set of specifications that enables integration of software

development. In addition, OSLC allows traceability with OSLC standard link types supported as we can see in

the following table.

Project relationship Link types

Related To Affected By Defect, Affects Plan Item and Related Change Request

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 13 / 54

Tested By Affects Test Result, Tested By Test Case

Implements Affects Requirement, Implements Requirement

Tracks Related Test Case, Test Execution Record, Test Plan, Test Script and Test Suite

Tracks Requirement Tracks Requirement

Table 1. Link types

4.3.8 Domains

OSLC comprehends a set of specifications for integrating lifecycle tools. This set allows conforming

independent software and product lifecycle tools to integrate both their data and workflows in support of

end-to-end lifecycle processes.

The underlying concept in OSLC is to enable traceability and interaction across domains. The specifications

of OSLC for each domain provide a complete definition of such domain which are linked to the OSLC Core

specification. The domains are defined in the next table.

Domain Short name Description

Requirements Management RM OSCL Requirements Management defines the OSLC

services and vocabulary for the Requirements Management

domain.

Requirements Management define the management of

Requirements, Requirements Collections and supporting

resources defined in the OSLC Core specification.

Change Management CM OSLC Change Management defines the OSLC services and

vocabulary for the Change Management domain.

Change Management specifies resources for the

management of change requests for the product, activities,

tasks, and relations between those and related resources in

other domains such as test cases, requirements, or

architectural resources.

Configuration Management CCM OSLC Configuration Management defines a set of REST

APIs for managing versions and configurations of linked

data resources from multiple domains and an RDF

vocabulary for Configuration Management

Architecture Management AM OSLC Architecture Management defines the OSLC services

and vocabulary for the Architecture Management domain.

Architecture Management resources address the

management of product design artefacts including models

and relationships with other resources such as

requirements, testing resources and change requests.

Quality Management QM OSLC Quality Management defines the OSLC services and

vocabulary for the Quality Management domain.

Quality Management resources define the test cases, test

plans, and test results for lifecycle of the software delivery.

Table 2. OSLC Domains

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 14 / 54

4.3.8.1 Requirements Management

Requirements Management (RM) is an OSLC specification that defines the properties, resources and

operations to be supported by a server of OSLC Requirements Definition and Management. OSLC Core lasts

versions are currently in public review as candidates for OASIS Standard.

Illustration 3. OSLC Requirements Management.

4.3.8.2 Change Management

Change Management (CCM) is a RESTful web services interface that allows the management of activities,

tasks and relationships related to the product change request, like test cases, requirements or architectural

resources.

Illustration 4. OSLC Change Management Overview.

4.3.8.3 Quality Management

Quality Management (QM) defines the test plans, test cases, and test results, along with the lifecycle of the

software delivery that should be implemented in an OSLC Quality Management provider.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 15 / 54

Illustration 5. OSLC RM Domain Resources.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 16 / 54

5 TOOLCHAIN

There are several actors involved in the development of the OSLC Bridge in a local environment (see chapter

6.2), including the ones presented and highlighted in yellow in the following figure.

Illustration 6. Toolchain.

 The Source Code of the OSLC Bridge is organized in two decoupled parts connected via a simple

interface.

 Jersey provides a REST framework that implements JAX-RS. This source code is automatically

generated with OPEN API using a YAML file for API REST definition.

 Eclipse Lyo supports the development of REST-based servers and clients in Java managing the

information as RDF resources.

The choice of the usage of Jersey as a framework is due to the possibility of sharing libraries, as Eclipse Lyo

uses Jersey internally.

In the final environment (see chapter 6.2), tools from toolchain presented in the following sections are also

used to build and deploy the OSLC Bridge.

Illustration 7. Development tools and environments.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 17 / 54

5.1 Docker

5.1.1 Overview

Docker [4] is a PaaS (platform as a service) solution that uses virtualization to deploy software in packages

called containers. These containers are isolated from each other and bundle their own software, libraries and

configuration files. They can communicate with each other through well-defined channels. The software that

hosts the containers is called Docker Engine.

Since all of the containers share the services of a single operating system kernel, they use fewer resources

than virtual machines. Likewise, Docker can use different interfaces to access virtualization features of the

Linux kernel..

5.1.2 Usage in OSLC Bridge

Docker is used to host the infrastructure in development environments and the OSLC Bridge in the final

environment in TUW.

5.2 Jazz technology platform

5.2.1 Overview

The Jazz platform integrates all the tasks across systems and the software development lifecycle. It provides

useful building blocks and frameworks to ease the development of tools and products.

5.2.2 Platform

The Jazz technology platform supports distributed development teams, provides scalable solutions from small

teams up to large enterprises and helps teams manage all lifecycle of systems and software development.

The Jazz technology platform is developed at jazz.net.

5.2.3 Usage in OSLC Bridge

Rational Team Concert (RTC) is part of Jazz Team Server (JTS). OSLC Bridge uses RTC to generate issues.

JTS provides the foundational services that enable a group of applications to work together as a single logical

server. After installing Jazz Team Server, applications such as Change and Configuration Management (CCM

or RTC), Quality Management (QM) and Requirements Management (RM) will be available.

With the next Dockerfile file can be built the JTS image.

FROM jruehlin/clm603-rtc

MAINTAINER Sergio Rodriguez "srodriguez@ulmaembedded.com"

RUN echo "#!/bin/sh" > startup.sh \

 && echo "/opt/IBM/JazzTeamServer/server/server.startup" >> startup.sh \

 && echo "tail -f /dev/null" >> startup.sh \

 && chmod +x startup.sh

EXPOSE 9443

ENTRYPOINT ["./startup.sh"]

To build the image, run the command:

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 18 / 54

>$user sudo docker build -t ues/rtc603 .

We create the image ues/rtc603

Using the docker-compose.yml file with static IP

version: '2.1'

networks:

 jts603_default:

 ipam:

 config:

 - subnet: 172.33.0.0/24

services:

 rtc603:

 image: ues/rtc603

 container_name: rtc603

 restart: unless-stopped

 ports:

 - 9443:9443

 extra_hosts:

 # - "adeptness.ulmaembedded.com:127.0.0.1"

 - "adeptness.ulmaembedded.com:172.33.0.2"

 networks:

 jts603_default:

 ipv4_address: 172.33.0.2

 volumes:

 - rtc603_data:/opt/IBM/JazzTeamServer/server

 rtc603-exim4smtp:

 image: namshi/smtp

 container_name: rtc603-exim4smtp

 restart: unless-stopped

 ports:

 - "25:25"

 environment:

 # # To act as a Gmail relay

 - GMAIL_USER=adeptness.mailer

 - GMAIL_PASSWORD=*********

volumes:

 rtc603_data:

Command in /home/adeptness/dockers/jts603 path

>$user sudo docker-compose -f docker-compose.yml up -d

Open the 9443 port in the Linux firewall. It may not be necessary depending on the system.

>$user sudo ufw allow 9443

In this case, we are connecting to an HTTPS server without a valid certificate, so we obtain a Warning of

potential security risk. By clicking on the advanced button, we accept the risk and continue.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 19 / 54

We connect to https://192.168.130.104:9443/jts or https://adeptness.ulmaembedded.com:9443/jts

Illustration 8. Jazz Team Server login.

5.3 RTC (Rational Team Concert™)

5.3.1 Overview

Rational Team Concert™ [5] is a tool for team collaborations that integrates development tasks, like iteration

planning, process definition, change management, source control, defect tracking, build automation, and

reporting.

Developers use Rational Team Concert to track their work, share their changes, and collaborate. Team leads

and project managers use it to plan releases and monitor progress by viewing plans, dashboards, and reports.

Rational Team Concert is the Change and Configuration Management (CCM) application in the Rational®

solution for Collaborative Lifecycle Management (CLM) and the IBM® Internet of Things Continuous

Engineering (IoT CE) Solution. These solutions integrate IBM Rational products to provide a complete set of

applications for software or systems development. The new name for the RTC tool is IBM Engineering

Workflow Management.

https://192.168.130.104:9443/jts
https://adeptness.ulmaembedded.com:9443/jts

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 20 / 54

Illustration 9. Rational Team Concert flow [6].

5.3.2 Collaboration and integration across the development lifecycle

RTC exchanges information directly in the context of your work, when a work item changes, the team

members are notified of the change.

With several views enabled to share team information, it can track team activity, present information in more

detail, or configure which information is visible at any time.

5.3.3 Process configuration and customization

All RTC projects follow a process [6]. In RTC the collection of rules, roles, practices, permissions, and guidelines

that you use to organize and control the workflow for a project is a process.

In the context of a project, a process is used to define user roles and their permissions for performing

operations. Processes are defined by a process-template that can be modified and configured to enforce

different rules at different points in the release.

5.3.4 RTC Interfaces

Rational Team Concert has several different interfaces, like an Eclipse client, a Microsoft Visual Studio client

and a web client. These client interfaces provide the developers with an integrated and complete development

environment.

5.3.5 Usage in OSLC Bridge

OSLC Bridge generate issues in Rational Team Concert from the Adeptness validation model.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 21 / 54

5.4 Stellio / NGSI-LD

5.4.1 Overview

Stellio is an NGSI-LD compliant context broker developed by EGM.[7]

Three business services make up a Stellio server:

- Entity service: is a service that manages the information context. This service is backed by a neo4j

database.

- Search service: handles the temporal (and geospatial) queries in Stellio. It’s backed by a TimescaleDB

database.

- Subscription service: manages subscriptions and notifications. It’s backed by a TimescaleDB database.

In addition, two other services complete a Stellio server:

- API Gateway: is a module that dispatches requests to Stellio business services

- Kafka: is a streaming engine that decouples communication inside the broker (and allows plugging

other services)

These services are developed in Kotlin and based on the Spring Boot frameworkand built with Gradle.

OSLC Bridge uses all the business services to search testcase entities and to subscribe to verdict values

changes.

5.4.2 NGSI-LD Data Model

Stellio context broker has semantic support that allows exchanging data in the NGSI-LD format.

An NGSI-LD entity is composed of:

Property Type Description

Id mandatory The identifier of the Entity (URI format).

Type mandatory The type of the Entity

Properties optional Properties

Relationships optional Relationships

@context mandatory JSON-LD specification for linked data

Table 3. NGSI-LD entity

A property in NGSI-LD is composed of:

Parameter Type Description

type mandatory Property or GeoProperty (Stellio Semantic Support)

value mandatory The value

unitCode mandatory The unit of the value in CEFACT format

Properties optional Properties

Relationships optional Relationships

Table 4. NGSI-LD property

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 22 / 54

A relationship in NGSI-LD is composed of:

Relationship Type Description

type mandatory Relationship (Stellio Semantic Support)

object mandatory The URI of the target Entity

Properties optional Properties

Relationships optional Relationships

Table 5. NGSI-LD relationship

Temporal Properties observedAt, createdAt and observedAt (Stellio Semantic Support) follow the ISO 8086

format.

5.4.3 NGSI-LD Mapping in Stellio

The proposed mapping approach for an NGSI-LD entity is as follows:

- Each entity is mapped to a subject node with the same id and type. createdAt, modifiedAt and

location attributes of the NGSI-LD entity are mapped to literal properties of this node.

- Each property is mapped to an object node. The vertex relating the entity node to its property node

is labelled has_value. The Property name, value, createdAt, modifiedAt and unitCode are mapped to

literal properties of this node. In the case of a property of property in NGSI-LD, each property will be

modelled as a node and a new has_value vertex relation will be created between them.

- Each relationship is mapped to an object node. createdAt and modifiedAt attribute are mapped to

literal properties of this node. The vertex relating the entity node to its relationship is labelled

has_object. As the object of a relationship in NGSI-LD is the URI of the related Entity, two vertexes

labelled has_object and the name of the Relationship are created from the Relationship node the

tagged entity node. In the case of:

o Relationship of Relationship: each sub-relationship is mapped to a subject node and new

has_object vertex will link these Relationships. The sub-relationship is related to the tagged

Entity via two vertexes labelled has_object and the name of the sub-Relationship.

o Property of a Relationship: each sub-property of a relationship will be mapped to a subject

node and a new has_value vertex will be link between the relationship to its sub-property

nodes.

o Relationship of a Property: each sub-relationship of a property is mapped to a subject node

and linked via the vertex labelled has_object. The sub-relationship is related to the tagged

Entity via two vertexes labelled has_object and the name of the Relationship. OpenAPI

5.4.4 Usage in OSLC Bridge

Using a docker to deploy a Stellio server in a development server or local environment.

Service Connection Port

Api gateway HTTP 8080

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 23 / 54

Entity service HTTP 8082

Search service HTTP 8083

Subscription service HTTP 8084

Table 6. Stellio NGSI-LD Context broker

NGSI-LD is an Open API and data model specification for context management published by ETSI.

Using the docker-compose.yml file created by EGM, then the Stellio Server is deployed.

For local development run in /home/adeptness/dockers/stellio path the command

>$user sudo docker-compose -f docker-compose.yml up -d

With this, several tools that Stellio Server needs to work, are installed and deployed.

- https://kafka.apache.org/

- https://zookeeper.apache.org/

- https://neo4j.com/

- https://www.postgresql.org/

Testing getting some ngsi-ld entities

- http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeploymentPlan

- http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeploymentComp

- http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeployableCompType

The response will return an empty JSON, for being the first call, if this is a new Stellio Server recently deployed.

[]

5.5 Maven

5.5.1 Overview

Apache Maven is a software project management and comprehension tool. Maven is a build automation tool

used primarily for Java projects.

Maven is based on a project object model (POM) concept, this POM is a central piece of information where

Maven manage the project's build, reporting and documentation.

5.5.2 Usage in OSLC Bridge

Maven is used for building the OSLC Bridge.

https://kafka.apache.org/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://neo4j.com/
https://neo4j.com/
https://www.postgresql.org/
https://www.postgresql.org/
http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeploymentPlan
http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeploymentComp
http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeploymentComp
http://adeptness.ulmaembedded.com:8880/ngsi-ld/v1/entities?type=DeployableCompType

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 24 / 54

5.6 OpenAPI

5.6.1 Overview

OpenAPI is a specification that allows RESTful web services description using machine-readable interface files.

OpenAPI Specification is conformed in an OpenAPI document which may be represented in either JSON or

YAML format.

An OpenAPI document can be made up of a single document or can be divided into multiple connected

parts. The $ref (According to RFC3986) fields in Open API specification is used to reference these parts as

follows from the JSON Schema definitions.

The file name openapi.json or openapi.yaml are the file names recommended for the root OpenAPI

document.

5.6.2 YAML

YAML [6] is a human-readable data-serialization format language and it is usually used to store data for

configuration files.

YAML intentionally differs from SGML skipping the redundant parts of Extensible Markup Language (XML)

and incorporating a minimal syntax to reduce the size of files.

It uses both Python-style indentations to indicate nesting YAML uses python indentations and a more compact

format using square brackets [...] for lists and curly brackets {...} for maps.

5.6.3 Swagger

Swagger [8] is an Interface Description Language for describing RESTful APIs expressed using JSON.

Swagger is used for design, build, document and test RESTful web services along with a set of open-source

software tools. Swagger includes automated documentation, code generation (into many programming

languages), and test-case generation.

Swagger specification was renamed in January 2016 to OpenAPI Specification and was moved to a new

software repository on GitHub. While the specification itself was not changed, this renaming signified the split

between the API description format and the open-source tooling.

5.6.4 Swagger UI framework

Swagger UI [9] is a web solution that allows visualizing and interacting with the API’s resources even when

any of the implementation logic it’s implemented.

Swagger UI framework is automatically generated from OpenAPI (formerly known as Swagger) specification

and provides a visual documentation connecting in a simple way the back-end implementation and the client-

side consumption.

5.6.5 OpenAPI Generator (Swagger Codegen)

OpenAPI Generator or Swagger Codegen [10] is an online code generator that supports OpenAPI version 3

specifications [11].

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 25 / 54

With an OpenAPI Specifications [12], Swagger Codegen allows generation of API client libraries (SDK

generation), server stubs and documentation automatically.

5.6.6 Usage in OSLC Bridge

With Swagger Editor the developer can edit a Swagger API specifications in YAML format inside a browser.

To preview documentation in real-time, the RESTful APIs for OSLC Bridge is defined as a YAML file of Open

API.

Using the full Swagger tooling with a valid Swagger JSON descriptions provides a simple way for code

generation, documentation, etc.

Using the docker-compose.yml file to create the container.

version: '3.3'

 services:

 swagger-editor:

 container_name: swagger-editor

 image: swaggerapi/swagger-editor

 restart: unless-stopped

 ports:

 - 9003:8080

Now when connecting to http://adeptness.ulmaembedded.com:9003 an open API editor is deployed. Part of

the OLSC Bridge is developing like a REST interface with this deployed editor.

Open API via Swagger Codegen project allows the generation of API client libraries (SDK generation), server

stubs and documentation. The entire set of generated code complies with the OpenAPI Specification swhich

automatically deploys a test environment in port 8080..

The following file is the one used to generate a Java source code for defined REST API for OSLC Bridge:

openapi: 3.0.0

info:

 title: OSLC Bridge Microservice REST API

 version: '0.1.6'

 description: REST API for OSLC Bridge Microservice

paths:

 /adms/v1/ping:

 get:

 summary: KeepAlive to know if the service is up

 tags:

 - health

 responses:

 '200':

 $ref: '#/components/responses/StatusOk'

 /adms/v1/info:

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 26 / 54

 get:

 summary: Get info about the microservice

 tags:

 - health

 responses:

 '200':

 description: Returns the information about the microservice

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MicroserviceInfo'

 /adms/v1/performance:

 get:

 summary: Metrics related with the performance of the microservice

 tags:

 - health

 responses:

 '200':

 description: Provides brief information on CPU and memory usage

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/PerformanceInfo'

 /adms/v1/status:

 get:

 summary: Get microservice status

 tags:

 - status

 responses:

 '200':

 description: Current microservice status

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Status'

 put:

 summary: Change microservice status

 tags:

 - status

 requestBody:

 description: Structure describing the microservice status

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Status'

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 27 / 54

 responses:

 '200':

 $ref: '#/components/responses/StatusOk'

 /adms/v1/setup:

 post:

 summary: Setup parameters for OSLC Bridge

 requestBody:

 description: Setup parameters for OSLC Bridge

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Setup'

 responses:

 '200':

 description: Setup parameters for OSLC Bridge

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Setup'

 tags:

 - setup

 /adms/v1/notify:

 post:

 summary: Listener for Stellio Subcriptions

 requestBody:

 description: Stellio JSON notification

 required: true

 content:

 text/plain:

 schema:

 type: string

 tags:

 - listener

 responses:

 '200':

 description: Notify?

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Notify'

components:

 responses:

 StatusOk:

 description: The service is up and respond to ping

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 28 / 54

 content:

 application/json:

 schema:

 type: object

 properties:

 message:

 type: string

 description: Up or not

 BadRequest:

 description: Bad Request

 InternalError:

 description: Internal error trying to access the resource

 content:

 application/json:

 schema:

 type: object

 properties:

 message:

 type: string

 description: Info about possible error

 schemas:

 PerformanceInfo:

 type: object

 properties:

 Memory:

 type: object

 properties:

 Alloc:

 type: number

 TotalAlloc:

 type: number

 CpuLoadAvg:

 type: number

 CpuTime:

 type: number

 CpuAvgUsage:

 type: number

 MicroserviceInfo:

 type: object

 properties:

 id:

 type: number

 Status:

 type: object

 properties:

 status:

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 29 / 54

 type: string

 description: Tells if the service is launched but not operating (ready)

or if it is running its functionality (running)

 enum:

 - ready

 - running

 - pause

 Notify:

 type: object

 properties:

 status:

 type: string

 description: Listener for Stellio Subscription

 enum:

 - true

 - false

 Setup:

 type: object

 properties:

 stelliourl:

 type: string

 description: Url of the Stellio server

 stelliouser:

 type: string

 description: Username for Stellio connection

 stelliosecret:

 type: string

 description: Secret for Stellio connection

 stellioauthurl:

 type: string

 description: Url of the Stellio Auth server

 rtcurl:

 type: string

 description: Url of the RTC server

 rtcuser:

 type: string

 description: Username for RTC connection

 rtcpass:

 type: string

 description: Password for RTC connection

The previous file is used to define the following seven API REST methods for Adeptness OSLC Bridge.

Method type Description Endpoint

GET Returns the information about the microservice /adms/v1/info

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 30 / 54

GET Provides brief information on CPU and memory usage /adms/v1/performance

GET The service is up and responds to ping /adms/v1/ping

POST Listener for Stellio Subcriptions /adms/v1/notify

POST Setup parameters for OSLC Bridge /adms/v1/setup

GET Current microservice status /adms/v1/status

PUT Change microservice status /adms/v1/status

Table 7. Adeptness OSLC Bridge methods.

5.7 Eclipse Lyo

5.7.1 Overview

Eclipse Lyo [13] is an OSLC standard implementation. It is used to promote the adoption of Linked Data

principles and the OSLC standards for publishing lifecycle data. Moreover, Eclipse Lyo enables the

interoperability of heterogeneous products, services, and other distributed network resources.

The open OASIS OSLC standard is based on a RESTful architecture and Linked Data principles, such as those

defined in the RDF family of specifications and the W3C Linked Data Platform.

Eclipse Lyo is an implementation of OSLC standard in Java that supports developers with the development of

Java REST-based servers and clients that need to share heterogeneous information as RDF resources.

5.7.2 Lyo SDK

Lyo SDK provides an OSLC Client with a series of full APIs to interact with OSLC Servers. It also provides

another layer of functionality built on top of Apache HttpClient and JAX-RS Client. These functionalities allow

the developer to manage common use cases such as OAuth handling, form login, sending queries, service

discovery, and processing query results.

5.7.3 Usage in OSLC Bridge

The Lyo SDK is the framework used to manage OSLC in Java source. The development of OSLC-Bridge

requires the next Lyo dependencies sited in a maven pom.xml file.

Artefact Version

java 1.8

oslc4j 4.0.0

lyo-client 4.0.0.M2

jena 3.17.0

Table 8. OSLC Bridge dependencies

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 31 / 54

5.8 Jersey

5.8.1 Overview

Jersey [14] is the reference implementation from Sun (now Oracle) of Jakarta RESTful Web Services, (JAX-RS;

formerly Java API for RESTful Web Services) is a Jakarta EE API specification that facilitates the creation of web

services according to the Representational State Transfer (REST) architectural pattern.

Eclipse Jersey is a REST framework of JAX-RS (JSR-370) implementation. JAX-RS uses annotations, introduced

in Java SE 5, to simplify the development and deployment of web service clients and endpoints.

5.8.2 Usage in OSLC Bridge

The use of the Jersey framework is mainly in com.ues.adeptness.stellio.utils.StellioUtils java class using

javax.ws.rs.* packages.

The Eclipse Lyo uses Jersey internally to manage REST petitions. Jersey is the default framework used in OSLC

Bridge to consume REST methods from other resources.

5.9 Spring Boot

5.9.1 Overview

Spring Boot is a way to create stand-alone Spring based Applications, those applications can be deployed

and run in several environments.

5.9.2 Spring framework

The Spring Framework is a popular application framework and inversion of control (IoC) container for the Java

platform. The core features in the framework's can be used by any Java application, but there are extensions

for building web applications on top of the Java EE (Enterprise Edition) platform.

5.9.3 Spring Boot solution

Spring Boot [15] is Spring's coding by convention or convention over configuration solution for creating java

based stand alone applications.

5.9.4 Usage in OSLC Bridge

The use of Spring Boot is mainly in io.swagger autogenerated package. Spring Boot is the default framework

used in OSLC Bridge to define the inner REST methods defined with OpenAPI.

5.10 JUnit

5.10.1 Overview

JUnit is part of the family of unit testing frameworks collectively known as xUnit that originated with SUnit

framework. JUnit is focused in provide a unit testing framework for the Java programming language. It has

been important in the development of test driven development (TDD).

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 32 / 54

5.10.2 Usage in OSLC Bridge

Software development teams use unit testing to design robust software elements that maintain code and

diminish issues inside code units. It is essential to perceive the importance of identifying and fixing defects in

the early stages of the software development life cycle.

The concept of unit testing is used to validate every unit of the software code compared with expectation.

This can improve testability and benefits by writing testable code.

For the complete development of OSLC Bridge and its artefacts, the necessary number of test units have been

implemented, thus guaranteeing the correct working of the development.

Those unit tests along with other test types are used to test coverage at least for 70% of the source code in

OSLC Bridge.

Package Tests Quantity

com.ues.adeptness.architecture Test for maintaining an interfaced architecture. 2

com.ues.adeptness.rest Tests for REST API. 3

com.ues.adeptness.rtc Test for RtcUtils. 9

com.ues.adeptness.stellio Test for StellioUtils. 9

com.ues.adeptness.stellio.responses Test for StellioUtils in asynchronous mode. 3

Table 9. OSLC Bridge tests

5.11 SonarQube

5.11.1 Overview

SonarQube [16] is an automatic code review solution tool, useful to detect bugs, code smells and

vulnerabilities in source code. It can integrate with any existing workflow to enable continuous code inspection

across your project branches and changes pull requests.

5.11.2 Usage in OSLC Bridge

SonarQube is used to scan for vulnerabilities, avoid them, and provide quality software.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 33 / 54

6 OSLC BRIDGE

6.1 Overview

The OSLC Bridge brings a common standardized interface connected to product lifecycle management tools.

OSLC enables the integration of federated, shared information across tools that support different but related

domains.

The most relevant for Adeptness Projects are:

- Core Specification, which defines the overall approach to OSLC-based specifications and capabilities.

These capabilities are often needed across several domains and provide a solid foundation for

reading and writing linked data resources.

- Configuration and Change Management Specification eases the management of product change

requests, activities, tasks and relationships between those, and related resources such as

requirements (Requirements Management domain) or test cases (Quality Management domain).

- Requirements Management Specification provide the management of requirements, requirement

collections and supporting resources defined in OSLC Core specification.

- Quality Management Specification defines the test plans, test cases and test results of the software

delivery lifecycle. These represent individual resources along with their relationships to other shared

resource types such as change requests and requirements.

The main microservice provided by the OSLC bridge is to receive all oracles test case execution results and

the conversion of these results in the form of standardized test case execution results and defects.

For this purpose, a REST API-based periodic subscription to the data logger requests the validation results

according to the Adeptness validation plan, and the corresponding artefacts are created to be used to adapt

the validation plan to the appeared defects at HiL/SiL validation phase.

Features:

- Automatic issue creation with a fail test case verdict

- Compliant with Adeptness interfaces

- Traceability of data obtained during operation validation with lifecycle artefacts

Advantages:

- Reduction on time for defining regression test needed in a new release

- Reduction on time for reproducing bugs appeared in operation

- Improvement in processes or design of next developments due to the collection of test data and its

subsequent analysis

- Use of IBM Rational Team Concert along with Jazz Team Server, consolidated tools for managing

the OSLC lifecycle

Limitations:

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 34 / 54

- Correspondence between Adeptness validation model and OSLC model. All data needed for

traceability purposes must be included and available in the model (e.g. test case verdict, requirement

identifier…)

6.2 Environments

6.2.1 Local Development Environment

The local development environment is based on a Linux distribution (see Table 10), where all the tools

deployed in Docker are integrated (see Illustration 10).

Distributor ID Ubuntu

Description Ubuntu 18.04.5 LTS

Release 18.04

Codename Bionic

Table 10. Ubuntu server

Illustration 10. Local development environment.

6.2.2 Final environment

Docker is deployed in the environment presented in the figure below. It is part of the TUW infrastructure

along with the Adeptness toolchain and the IBM Cloud Server.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 35 / 54

Illustration 11. Final environment.

6.2.2.1 IBM Cloud Demo Environment

The IBM Cloud® platform is a platform as a service (PaaS) and an infrastructure as a service (IaaS) combined

to provide an homogenous experience.

The IBM Cloud platform scales and supports with small development teams and organizations and with large

enterprise businesses development teams. IBM Cloud provides solutions that enable to deploy locally but with

a global scalability.

This environment is used to deploy a Jazz Team Server accessible for all partners. In this environment, a

Portainer instance is also deployed to facilitate the administration of the docker containers.

6.2.2.2 TUW Demo Environment

This environment is used to deploy the OSLC-Bridge microservice and connect it to a Stellio, that is deployed

in this server too. The Stellio server with the Adeptness Validation model is deployed in TUW via Kubernetes

and it is accessible in IP 128.130.123.122 port 31312

6.3 Artefacts

To develop the final program, several artefacts have been developed, the purpose of these is decoupling

dependencies between packages, maintain a well structuredsystem, and allow future development.

Artefact Definition Type

RTCUtils Utilities for managing Rational Team Concert with a simple

WorkItem class.

Library

RTCFactory Different factories to access to OSLC data as Legacy, Jena and

DOM4j

Library

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 36 / 54

StellioUtils Library to manage Stellio model with Java classes Library

StellioTestServer Library for mockup a Stellio server for testing. Library

RtcTestServer Library for mockup a RTC server for testing. Library

Table 11. Developed artefacts

6.4 Architecture

The development is divided into two decoupled codes as shown in the figure below. One is the definition

using OpenApi, spring.io package; and the other is the Business Logic of the Adeptness Bridge.

Illustration 12. OSLC Bridge architecture.

The following sections provide more detail of the main architecture block presented in the figure above.

6.4.1 Spring Boot (Spring.io)

Open API via Swagger Codegen project allows generation of API client libraries (SDK generation), server stubs

and the documentation of OpenAPI Specifications. With the previous file, a Java source code for the defined

REST API is generated.

6.4.2 Interface

An interface has been developed to decouple business logic from the Rest API implementation. This allows

OSLCBridge Business logic to be independent of the Rest Open API definition.

/**

 * Interface for Adeptness controller.

 */

public interface AdeptnessControllerInterface {

 public ResponseEntity<MicroserviceInfo> admsV1InfoGet();

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 37 / 54

 public ResponseEntity<Setup> admsV1SetupPost(Setup body);

 public ResponseEntity<PerformanceInfo> admsV1PerformanceGet();

 public ResponseEntity<InlineResponse200> admsV1PingGet();

 public ResponseEntity<Status> admsV1StatusGet();

 public ResponseEntity<InlineResponse200> admsV1StatusPut(Status body);

 public ResponseEntity<Notify> admsV1NotifyPost(String body,

 HttpServletRequest request);

}

6.4.3 OSLC Bridge Business

Adeptness Business involves the implementation of several artefacts (e.g., java utils libraries) on the Adeptness

domain (NGSI-LD validation model) for an OSLC standard integration.

6.4.3.1 RTCUtils

Eclipse Lyo client in a ChangeRequest class encapsulates work item of OSLC standard. For our purposes, the

use of ChangeRequest is to abstract for mapping concepts of NGSI-LD to OSLC RDF.

RTCUt is a library developed to manage the OSLC Client via Lyo Client with the Workitem class called

RtcWorkItem. This class has the minimum to meet the needs of requirements avoiding the complexities of

Lyo Client in a single type of class and helped methods.

Some of the methods that this class contains are:

Method name Description

login() Login in JTS Server

createWorkItem(RtcWorkItem) Create an RtcWorkItem

createDefect(RtcWorkItem) Create an RtcWorkItem of type Defect

createTask(RtcWorkItem) Create an RtcWorkItem of type Task

getProjectAreas() Get all Project áreas in this RTC Server

getWorkItemById(URI, String) Get an RtcWorkItem by ID and Project Area

getRdfData(URI) Get the RDF data from URL

getUrlFromId(String, String) Get the URL link for a ID

query(String, String, String) Query with select and where againts JTS Server

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 38 / 54

queryOslcQuery(String, String, String) Query with OSLC Query againts JTS Server

updateWorkItem(RtcWorkItem) Update an RtcWorkItem of any type.

logout() Logout in JTS Server

Table 12. RTCUtils methods

6.4.3.2 RTCFactory

In addition to Lyo Client, there are other alternatives to access, generate or process RDF data from and to

OSLC Server.

There are fifferent Java factories, as it is shown in the Artifacts section, to access OSLC data as Legacy, Jena

and DOM4j. The developer only has to select one of them and will have an abstraction for RTCUtils using the

desired implementation.

Factory name Library used Link

Legacy
Implemented using Lyo Client

https://oslc.github.io/developing-oslc-

applications/eclipse_lyo/eclipse-lyo.html

Apache Jena Implemented using JENA Client https://jena.apache.org/index.html

DOM4J Create an RtcWorkItem of type

Defect

https://dom4j.github.io/

Table 13. OSLC Bridge Factories

6.4.3.3 StellioUtils

Analogously to the previous library made for Rational Team Concert (RTCUtils), a JAVA library has been done

for NGSI-LD Context Broker (Stellio) which is called StellioUtils.

At this time, this library is only for internal use. In next releases, the possibility of make it open-source will be

analyzed.

To conform to the requirements, and to facilitate development, the interaction with Stellio is abstracted to a

few methods contained in this library.

Method name Description

login() Login in Stellio Server.

createSubscription(String) Create a Subcription.

getStellioEntity(Class<?>) Get a Stellio entity by defined Java class.

getStellioEntityById(String) Get a Stellio entity by unique ID.

getStellioEntityByIdAsync(String,

StellioResponseReceivedAsyncInterface)

Get a Stellio entity by unique ID asynchronously.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 39 / 54

getStellioEntityByType(Class<?>) Get a Stellio entity by type defined in a Java class.

getStellioEntityByType(String) Get a Stellio entity by type as String.

getStellioEntityByTypeAsync(Class<?>,

StellioResponseReceivedAsyncInterface)

Get a Stellio entity by type defined in a Java class

asynchronously.

getStellioEntityByTypeAsync(String,

StellioResponseReceivedAsyncInterface)
Get a Stellio entity by type as String asynchronously.

logout() Logout from Stellio Server.

Table 14. StellioUtils methods.

Along with StellioUtils, a StellioFollowEngine is developed to traverse the graph with the method

followRelations.

Method name Description

followRelations(StellioEntity) Follow the relations with Stellio Object from a Stellio Entity.

followRelations(StellioEntity, Class<?>) Follow the relations with StellioObject from a Stellio Entity,

only return classes instance of a class.

Table 15. followRelations method

To follow relations from all StellioObject to a list of defined StellioEntity, all methods are inspected with

reflection recursively and all StellioEntities are traversed to find the listed StellioObjects.

6.4.3.4 Test Servers

Test units suffer testing problems when making tests against the URLs, for this reason and aiming at solving

it, two test libraries have been developed:

Both libraries mock the servers with a java mocking library, allowing test fake responses from the server

simulating a true server.

6.4.3.4.1 RtcTestServer

To allow testing the RTCUtils library, we created another library for testing, called RTCTestServer. This library

uses a MockServer with expectations defined for RTC.

The expectations are defined for each OSLC element needed such as ProjectAreas, Catalog, Defects, Literals,

Queries, WorkItems, etc.

6.4.3.4.2 StellioTestServer

To allow testing the StellioUtils library, we created another library for testing, called StellioTestServer. This

library uses a MockServer with expectations defined for Stellio.

The expectations are defined for Stellio elements needed such as Entities and queries by type.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 40 / 54

6.5 Validation Model

6.5.1 Overview

The Adeptness validation model is used in OSLC Bridge implementation to subscribe to a test case entity and

to receive a notification when a test case fails. This test case entity is mapped to the OSLC Defect work item

to create an issue when an error occurred. In the current model, the test case entity includes the verdict

property.

In addition, a new requirement entity has been created. This entity has been linked to the test cases entity,

thus providing complete traceability of the possible issues.

Illustration 13. Validation model.

6.5.2 Entities

Among all this model, the entities created for traceability are zoomed in the next figure.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 41 / 54

Illustration 14. Testcase with verdict as parameter.

The following table maps the validation model entities and the OSCL resources in the OSLC Bridge.

Entity URN namespace OSCL Domain

Requeriment urn:ngsi-ld:Requeriment:IDSTRING Requirement resource in RM domain

Test Case urn:ngsi-ld:TestCase:IDSTRING Defect resource in CCM domain

Table 16. Mapping Adeptness model with OSLC Domain

To allow a complete traceability, in next releases the OSLC Bridge will add a new OSLC Domain, as it is shown

in the following table.

Entity URN namespace OSCL Domain

Requeriment urn:ngsi-ld:Requeriment:IDSTRING Requirement resource in RM domain

Oracle urn:ngsi-ld:Oracle:IDSTRING Defect resource in CCM domain

Test Case urn:ngsi-ld:TestCase:IDSTRING Test Case resource in QM domain

Table 17. Mapping Adeptness model with OSLC Domain

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 42 / 54

More information about the traceability in Section 6.6.3

6.6 Operation

6.6.1 Setup

As long as the OSLC Bridge is not configured, it will remain inactive until it is activated through the setup

method. When setup method is called, the OSLC Bridge begin the process of executing the next action:

- Login in RTC Server

- Login in Stellio Server

- Create a subscription to Stellio Server

- Awaiting notification from Stellio Server

To login RTC correctly, next parameters are needed:

Setup Parameter Description

rtc.url RTC Server address.

rtc.user RTC user for login.

rtc.password RTC password for login.

rtc.projectarea Project Area where information of the project is stored.

rtc.context RTC context in JTS.

Table 18. Setup RTC.

These parameters can be sent in the setup method as arguments or defined in properties files on the server-

side.

The rtc.projectarea parameter needs that a Project Area in RTC for Adeptness project has been previously

created. A project area defines the project structure, project deliverables, team structure, schedule and

process for a project

To login Stellio correctly, next parameters are needed:

Setup Parameter Description

stellio.url Stellio Server address.

stellio.auth.url Stellio Auth Server address.

stellio.entities.path Path to entities ngsi-ld.

stellio.client.id Stellio user for login.

stellio.client.secret Stellio password for login.

Table 19. Setup Stellio.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 43 / 54

Like the previous parameters, these can be sent in the setup method as arguments or defined in properties

files on the server-side.

When the two login processes are correct, a subscription of Stellio is generated, and a Stellio subscription

against TestCase entities in the validation model is created.

The Stellio subscription needs a query to create a proper subscription. The query works subscribing to changes

in Verdict property of TestCase entities, and it triggers when the discrete property of verdict property is Failed.

Receiving from the server a response that the correct subscription has been created, the OSLC Bridge awaiting

until a notification will be received.

6.6.2 Notification

At some point, an external agent with no relation with OSLC Bridge will change the value of discrete verdict

to fail. Then a notification from Stellio is fired. The endpoint for that notification is a REST method in OSLC

Bridge development.

When the fired notification is received in the OSLC Bridge, the OSLC Bridge begin with the creation of an

OSLC Artifact of type Defect into the CCM domain.

To create the defect, the work item OSLC Bride collects information from Stellio Server, using, if necessary,

the developed StellioFollowEngine to traverse the graph.

With the collected information, the OSLC Bridge maps concepts from NGSI-LD Adeptness validation model

to OSLC Standard

The Defect created contains the next attributes, both mandatories and optionals, in an RDF file.

Attributtes Description

dcterms:created Dublin Core, Timestamp of resource creation.

dcterms:type Literal for Defect

rtc_cm:filedAgainst Workitem category for which a work item is filed against for.

rtc_cm:timeSheet Starting date of a work item time entry.

dcterms:contributor Dublin Core, responsible for Change Request.

rtc_cm:resolvedBy User that resolved the work item.

rtc_cm:state Status of the work item

oslc_cm:verified Change Request has been verified.

oslc:discussedBy Comments and notes of the Change Request.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 44 / 54

acc:accessContext Access Context for IndexableLinkedDataProvider.

oslc_cmx:project In the Extended Change Request Definition namespace, the project of

this Change Request.

dcterms:creator Dublin Core, Creator of the resource.

process:projectArea Link a resource to its project area.

rtc_cm:modifiedBy User that make the last modification to the work item.

dcterms:modified Dublin Core, Timestamp of resource modification.

dcterms:identifier Unique identifier for a resource.

oslc_cm:testedByTestCase Test case by which this change request is tested.

oslc_cm:approved Change Request has been approved.

rtc_cm:progressTracking Progress information for a work item.

oslc_cm:inprogress Change Request is in an active work state.

oslc_cm:fixed Change Request has been fixed.

oslc:instanceShape Resource Shape for resource property value-types and allowed values.

oslc:shortId Like dcterms:identifier but in shorter form.

rtc_cm:repository Repository of the work item.

rtc_cm:type Type of the work item. A Defect type Workitem.

dcterms:description Dublin Core is a sufficiently descriptive text.

oslc_cm:closed Change Request is done

oslc:shortTitle Short title name to identify a resource

oslc:serviceProvider OSLC Service Provider link.

rtc_cm:subscribers Subscribers of the work item.

dcterms:subject Tag for a resource

oslc_cmx:priority In the Extended Change Request Definition namespace, the priority of

this Change Request.

oslc_cmx:severity In the Extended Change Request Definition namespace, the severity of

this change request.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 45 / 54

rdf:type rdf:resource="http://open-services.net/ns/cm#ChangeRequest"

oslc_cm:status The status of the Change Request.

oslc_cm:reviewed Denote if Change Request has been reviewed.

dcterms:title Dublin Core, short summary, single line.

Table 20. OSLC attributes.

Steps performed by the OSLC Bridge to perform the creation of a defect work item are:

- Receiving notification from Stellio Server

- Collect information from Stellio Server about TestCases.

- Map NGSI-LD to an OSLC RDF Resource

- Create a defect work item.

6.6.3 Traceability

The Verdict property contains references to the associated TestCase, and thus, to the validated requirement

through the associated link to Requirement Entity. This can be seen in the semantic model stored defined for

Stellio:

Illustration 15. Testcase based model.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 46 / 54

After a Test Case is executed in the Adeptness ecosystem, the verdict property is updated through MQTT to

Stellio. As far as OSLC Bridge is subscribed to such property, if the verdict result is fail, the system shall raise

a new Defect associated with that verdict.

That means, specifically, creating a defect from the context information received from Stellio in NGSI-LD

format.

With this information, once the Defect is created in the RTC Change Management application, new reasoning

can be done using the references in NGSI-LD. For instance:

- The reference to TestCase Entity in NGSI-LD can be mapped to Requirements Management through

OSLC Bridge, using OSLC QM TestCase artefact, through the Change Request artefact to which is

associated the Defect.

- The reference to Requirement can be tracked back to Requirements Management domain in OSLC

or to the oslc_cm:affectsRequirement, oslc_cm:implementsRequirement, or oslc_cm:

:tracksRequirement properties in Defect artifact.

6.7 Build

The OSLC Bridge project is a Spring Boot Web Service generated via OpenAPI in a Maven project. This Maven

project admits goals like spring-boot:run or clean install spring-boot:run

Run directly form CLI:

$ mvn spring-boot:run

Illustration 16. OSLC Bridge running from CLI.

Or with tests:

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 47 / 54

$ mvn clean install spring-boot:run

From eclipse, with Spring Tools for Eclipse IDE installed, run from Eclipse with Run As > Spring Boot App.

Illustration 17. OSLC Bridge running from IDE.

To create JAR package with maven:

$ mvn package

To dockerize:

- Create the JAR

- Copy the JAR file adeptness-oslcbridge.jar in target/ to docker/jar

- Into the docker path for create image run:

$ docker build . -t ues/adeptness-oslcbridge:0.1.0

- To run the image, creating a container named adeptness-oslcbridge:

$ docker run -d --name adeptness-oslcbridge -p:8080:8080 ues/adeptness-

oslcbridge:0.1.0

6.8 Deploy

To deploy:

- Install docker from docker.io https://docs.docker.com/engine/install/ubuntu/

- Dockerize the OSLC Bridge copying the JAR file adeptness-oslcbridge-0.1.5.jar in target/ to docker/jar

- Using this Dockerfile

FROM adoptopenjdk/openjdk11:jre-11.0.6_10-alpine

LABEL version="0.1" maintainer="Sergio Rodriguez

<srodriguez@ulmaembedded.com>"

COPY jar /home

#If configs files are created put directly into docker

#COPY stellio.properties /

https://docs.docker.com/engine/install/ubuntu/

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 48 / 54

#COPY rtc.properties /

#COPY adeptness.properties /

CMD java -jar /home/adeptness-oslcbridge-0.1.5.jar

io.swagger.Swagger2SpringBoot

EXPOSE 8080

- Create image for Docker run:

sudo docker build . -t ues/adeptness-oslcbridge:0.1.5

- To run the image, creating a container named adeptness-oslcbridge

sudo docker run -d --name adeptness-oslcbridge-rtc -p:8080:8080 --add-host

adeptness.ulmaembedded.com:172.33.0.2 ues/adeptness-oslcbridge:0.1.5

- OSLC Bridge needs connections with Stellio network, an internal network and Jazz Team Server

network; and external network in the IP 172.33.0.2 for adeptness.ulmaembedded.com that contains

an IBM Cloud server where is deployed IBM Jazz Team Server for adeptness.

- Connect to the docker container and change or create the properties files to work in this

environment.

OSLC Bridge configuration

PAY ATTENTION this file overwrite config from

/uesoslcbridge/src/main/resources JAR

oslc.bridge.about=(c) 2021 Ulma Embedded Solutions

oslc.bridge.version=v 0.1.5

oslc.bridge.ip=http://128.130.123.118:8080/adms/v1/notify

oslc.bridge.time=HH:mm:ss

For RTC

rtc.context=ccm/

rtc.url=https://public.adeptness.ulmaembedded.com:9443/

rtc.user=adeptness

rtc.password=**************

rtc.projectarea=adeptness (Change Management)

For Stellio

stellio.entities.path=/ngsi-ld/v1/entities

#stellio.auth.url=https://sso.eglobalmark.com/auth/realms/stellio

-dev/protocol/openid-connect/token

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 49 / 54

stellio.url=http://128.130.123.122:31312

stellio.client.id=adeptness

stellio.client.secret=********-***-***-***

- Now the bridge is ready to start using REST API method.

curl -X POST " http://128.130.123.118:8080/adms/v1/setup" -H "accept:

application/json" -H "Content-Type: application/json" -d "{}"

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 50 / 54

7 SUMMARY

In the CPSoS context, it is important to know which lifecycle artefacts are affected by situations that occurred

at operation time to reduce the time spent in impact and traceability analysis. For this purpose, we focused

on the trace of the operational data and artefacts, which has been accomplished using the OSLC Bridge

generated in Adeptness.

The OSLC Bridge is an Adeptness-specific implementation bringing together OSLC world and Adeptness

NGSI-LD defined entities, microservices, attributes and resources. The overall ecosystem does not only

manages the CPSoS seamless interoperability, but also enables lifecycle collaboration, from requirements

management, and design, to verification and validation artefacts.

This collaboration provides a complete picture of product lifecycle management and application lifecycle

management and eases traceability from conception to runtime execution.

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 51 / 54

8 RISK REGISTER

Risk Number Description of Risk Proposed Risk Mitigation Measure Probability/

effect

1 Incompatibility:

The solution adapters

do not use OSLC-

supported applications

for RM, QM or CCM

The source code decoupled helps to mitigate this

risk. However, some source code needs to be

adapted.

High

2 Dependency of

commercial OSLC

solutions

As partners of IBM, we could put in contact with

the industrial partners with IBM solutions

Medium

3 High resource

consumption

The technical requirements can be nowadays

easily overcome with an upgrade of

corresponding server memory, hard disk, etc.

Low

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 52 / 54

9 REFERENCES

- [1] https://www.oasis-open.org/committees/download.php/61054/Oslc Core 2.0 Final.pdf

- [2] https://www.eclipse.org/lyo/

- [3] https://www.w3.org/RDF/

- [4] https://docs.docker.com/get-started/

- [5] https://www.ibm.com/docs/es/elm/6.0?topic=overview-rational-team-concert

- [6] https://www.ibm.com/docs/ro/elm/6.0.6.1?topic=capabilities-rational-team-concert

- [7] https://www.egm.io/

- [8] https://yaml.org/

- [9] https://swagger.io/specification/

- [10] https://github.com/swagger-api/swagger-ui

- [11] https://github.com/swagger-api/swagger-codegen

- [12] https://graphql-faas.github.io/OpenAPI-Specification/IMPLEMENTATIONS.html

- [13] https://oslc.github.io/developing-oslc-applications/eclipse_lyo/eclipse-lyo.html

- [14] https://eclipse-ee4j.github.io/jersey/

- [15] https://spring.io/projects/spring-boot

- [16] https://www.sonarqube.org/

https://www.oasis-open.org/committees/download.php/61054/Oslc%20Core%202.0%20Final.pdf
https://www.eclipse.org/lyo/
https://www.w3.org/RDF/
https://www.ibm.com/docs/es/elm/6.0?topic=overview-rational-team-concert
https://www.ibm.com/docs/ro/elm/6.0.6.1?topic=capabilities-rational-team-concert
https://yaml.org/
https://swagger.io/specification/
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-codegen
https://graphql-faas.github.io/OpenAPI-Specification/IMPLEMENTATIONS.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/eclipse-lyo.html
https://eclipse-ee4j.github.io/jersey/
https://spring.io/projects/spring-boot
https://www.sonarqube.org/

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 53 / 54

10 QUALITY ASSURANCE

The executive board is the body for quality assurance. The procedure for review and approval of deliverable

is described in Deliverable Report D8.1 – “Project handbook”. The quality will be ensured by checks and

approvals by WP Leaders as part of the executive board (see front pages of all deliverables).

ADEPTNESS – 871319

D4.5 - Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for CPSoS

 ADEPTNESS – 871319 54 / 54

11 ACKNOWLEDGEMENTS

 This project has received funding from the European Union’s Horizon

2020 research and innovation programme under Grant Agreement

no. 871319.

Disclaimer

This document reflects the views of the author(s) and does not necessarily reflect the views or policy of the

European Commission. Whilst efforts have been made to ensure the accuracy and completeness of this

document, the ADEPTNESS consortium shall not be liable for any errors or omissions, however, caused.

	1 Purpose of the document
	1.1 Document structure
	1.2 Deviations from the original Description in the Grant Agreement Annex 1 Part A
	1.2.1 Description of work related to deliverable in GA Annex 1 – Part A
	1.2.2 Time deviations from original planning in GA Annex 1 – Part A
	1.2.3 Context deviations from the original plan in GA Annex 1 – Part A

	2 Introduction
	3 Overview
	4 Background and Motivation
	4.1 Background
	4.2 Motivation
	4.3 OSLC (Open Services for Lifecycle Collaboration)
	4.3.1 Definition
	4.3.2 Organization
	4.3.3 Open specifications
	4.3.4 Eclipse Lyo
	4.3.5 Technologies
	4.3.6 RDF (Resource Description Framework)
	4.3.7 Traceability
	4.3.8 Domains
	4.3.8.1 Requirements Management
	4.3.8.2 Change Management
	4.3.8.3 Quality Management

	5 Toolchain
	5.1 Docker
	5.1.1 Overview
	5.1.2 Usage in OSLC Bridge

	5.2 Jazz technology platform
	5.2.1 Overview
	5.2.2 Platform
	5.2.3 Usage in OSLC Bridge

	5.3 RTC (Rational Team Concert™)
	5.3.1 Overview
	5.3.2 Collaboration and integration across the development lifecycle
	5.3.3 Process configuration and customization
	5.3.4 RTC Interfaces
	5.3.5 Usage in OSLC Bridge

	5.4 Stellio / NGSI-LD
	5.4.1 Overview
	5.4.2 NGSI-LD Data Model
	5.4.3 NGSI-LD Mapping in Stellio
	5.4.4 Usage in OSLC Bridge

	5.5 Maven
	5.5.1 Overview
	5.5.2 Usage in OSLC Bridge

	5.6 OpenAPI
	5.6.1 Overview
	5.6.2 YAML
	5.6.3 Swagger
	5.6.4 Swagger UI framework
	5.6.5 OpenAPI Generator (Swagger Codegen)
	5.6.6 Usage in OSLC Bridge

	5.7 Eclipse Lyo
	5.7.1 Overview
	5.7.2 Lyo SDK
	5.7.3 Usage in OSLC Bridge

	5.8 Jersey
	5.8.1 Overview
	5.8.2 Usage in OSLC Bridge

	5.9 Spring Boot
	5.9.1 Overview
	5.9.2 Spring framework
	5.9.3 Spring Boot solution
	5.9.4 Usage in OSLC Bridge

	5.10 JUnit
	5.10.1 Overview
	5.10.2 Usage in OSLC Bridge

	5.11 SonarQube
	5.11.1 Overview
	5.11.2 Usage in OSLC Bridge

	6 OSLC Bridge
	6.1 Overview
	6.2 Environments
	6.2.1 Local Development Environment
	6.2.2 Final environment
	6.2.2.1 IBM Cloud Demo Environment
	6.2.2.2 TUW Demo Environment

	6.3 Artefacts
	6.4 Architecture
	6.4.1 Spring Boot (Spring.io)
	6.4.2 Interface
	6.4.3 OSLC Bridge Business
	6.4.3.1 RTCUtils
	6.4.3.2 RTCFactory
	6.4.3.3 StellioUtils
	6.4.3.4 Test Servers
	6.4.3.4.1 RtcTestServer
	6.4.3.4.2 StellioTestServer

	6.5 Validation Model
	6.5.1 Overview
	6.5.2 Entities

	6.6 Operation
	6.6.1 Setup
	6.6.2 Notification
	6.6.3 Traceability

	6.7 Build
	6.8 Deploy

	7 Summary
	8 Risk Register
	9 References
	10 Quality Assurance
	11 Acknowledgements

