

ADEPTNESS ð Design-Operation Continuum Methods

for Testing and Deployment under Unforeseen

Conditions for Cyber-Physical Systems of Systems

EUROPEAN COMMISSION

Horizon 2020

H2020-ICT-01-2019

GA No. 871319

Deliverable No. ADEPTNESS D5.3

Deliverable Title Workflow and toolchain documentation

Deliverable Date 2022-03-31

Deliverable Type Report

Dissemination level Public

Written by UES 2022-03-20

Checked by SRL, TUW, MGEP, IKL 2022-03-31

Approved by Executive board 2022-03-31

Status v1.1 2022-03-20

Ref. Ares(2022)2431677 - 01/04/2022

H2020-ICT-01-2019 ς 871319 ς ADEPTNESS: Design-Operation Continuum Methods for Testing and
Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems

Acknowledgement

The author(s) would like to thank the partners involved with the project for their valuable comments on

previous drafts and for performing the review.

Project partners

1 ð MGEP ð Mondragon Goi Eskola Politeknikoa ð ES

2 ð ORO ð Orona S. Coop ð ES

3 ð UES ð Ulma Embedded Solutions S. Coop ð ES

4 ð SRL ð Simula Research Laboratory S. Coop ð NO

5 ð BT ð Bombardier Transportation Sweden ð SE

6 ð IKL ð Ikerlan S. Coop ð ES

7 ð EGM ð Easy Global Market SAS ð FR

8 ð MDH ð Mälardalens Högskola ð SE

9 ð TUW ð Technische Universität Wien ð AT

Disclaimer:

This project has received funding from the European Unionõs Horizon 2020 research and

innovation programme under grant agreement No 871319.

Document Information

Additional author(s) and contributing partners

Name Organisation

Francisco Ruiz

Sergio Rodríguez
UES

Aitor Arrieta

Goiuria Sagardui

Gorka Olalde

MGEP

Franck Le Gall

Benoit Orihuela

Romain Magnani

EGM

Aitor Agirre

Blanca Kremer
IKL

Shaukat Ali

Liping Han
SRL

Zlatan TucakoviĻ

Meixun Qu
TUW

Wasif Afzal

Amirali Piadehbasmenj
MDH

Document Change Log

Name Date Comments

V1.0 2022-02-15 Initial draft

V1.1 2022-03-31 Added contribution from partners

Exploitable results

Exploitable results Organisation(s) that can exploit the result

Step-by-step guidance to use microservices

Available toolchain and configuration

Consortium partners

Consortium partners

CONTENTS

1 PURPOSE OF THE DOCUMENT 1

1.1 DOCUMENT STRUCTURE 1

1.2 DEVIATIONS FROM THE ORIGINAL DESCRIPTION IN THE GRANT AGREEMENT ANNEX 1 PART A 1

1.2.1 Description of work related to deliverable in GA Annex 1 ð Part A 1

1.2.2 Time deviations from original planning in GA Annex 1 ð Part A 1

1.2.3 Context deviations from the original plan in GA Annex 1 ð Part A 1

2 INTRODUCTION 2

3 SUBSYSTEMS PARTICIPATING IN CPSOS 3

3.1 DEPLOYMENT SUBSYSTEM 3

3.1.1 Deployment orchestrator microservice 4

3.1.2 Deployment agent microservice 4

3.2 MONITORING AND LOGGER SUBSYSTEM 5

3.2.1 Monitoring orchestrator microservice 6

3.2.2 Monitoring agents microservices 6

3.2.3 Trace library 6

3.2.4 Stellio 6

3.2.5 SenML-MQTT Stellio Bridge 7

3.2.6 STL-Refined Prometheus Monitoring 7

3.2.7 SenML-MQTT Prometheus agent 7

3.2.8 STL runtime monitor 7

3.3 VALIDATION SUBSYSTEM 8

3.3.1 Validation orchestrator microservice 8

3.3.2 Validation agent microservice 8

3.3.3 Oracle microservice 9

3.3.4 External tool microservice 9

3.3.5 DSL2Oracle tool microservice 9

3.4 TAAS SUBSYSTEM 9

3.4.1 NGSI-LD socket notifier 10

3.5 TEST GENERATION SUBSYSTEM 10

3.5.1 GraphWalker as a Restful service 10

3.6 OSLC BRIDGE SUBSYSTEM 12

3.6.1 OSLC Bridge Microservice 13

3.7 UNCERTAINTY SUBSYSTEM 13

3.7.1 Uncertainty detection 14

3.7.2 Recovery microservice 14

4 DESIGN-OPERATION CONTINUUM ENGINEERING WORKFLOW 15

4.1 TEST ARTIFACT GENERATION AND PROVISION 17

4.1.1 Test Case Generation & provisioning 17

 The generated scripts and location of input data is then packed into Docker images, and provided

to the Docker registry. 20

4.1.2 DSL-based Oracle Generation & provisioning 20

4.2 PLANS DEFINITION 20

4.2.1 Context provisioning 21

4.2.1.1 CPSoS Specification 22

4.2.1.2 Deployable Components Specification 25

4.2.2 Creation of the Deployment plan 26

4.2.3 Creation of the Monitoring Plan 28

4.2.4 Creation of the Validation Plan 29

4.2.5 JSON Generation from TaaS interface 30

4.3 EXECUTION WORKFLOW 32

4.3.1 Jenkins Execution Pipeline (Trigger Adeptness plan) 33

4.3.2 Deployment Plan execution 34

4.3.3 Monitoring Plan execution 36

4.3.4 Validation Plan execution 37

4.3.4.1 Elevator 39

4.3.4.2 Train Control Management System (TCMS) 39

4.4 EXTENSIONS 40

4.4.1 Uncertainty Subsystem: Generation + Detection 40

4.4.1.1 Uncertainty generation at design-time 42

4.4.1.2 Uncertainty detection at run-time 43

4.4.2 OSLC Bridge 43

4.4.3 STL-Refined Prometheus Monitoring plugin 45

4.4.3.1 SenML-MQTT Prometheus agent - bridge the MQTT and Prometheus 45

4.4.3.2 STL Refinement for Alerting Rule in Prometheus 46

5 CONCLUSIONS 48

6 RISK REGISTER 49

7 QUALITY ASSURANCE 50

8 ACKNOWLEDGMENTS 51

LIST OF FIGURES

Figure 1. GraphWalker REST API commands .. 10

Figure 2. Workflow definition ... 16

Figure 3. Workflow to Test Artifacts Generation .. 17

Figure 4. Sequence of the Test Case Generation ... 18

Figure 5. Test Case Generation and Provisioning Workflow ... 19

Figure 6. DSL-based Oracle Generation Workflow... 20

Figure 7. Planning Workflow ... 21

Figure 8. Sequence diagram for provisioning CPSoS in Stellio .. 23

Figure 9. Sequence diagram for provisioning CPS in Stellio .. 23

Figure 10. Sequence diagram for provisioning Sensors in Stellio .. 24

Figure 11. Sequence diagram for provisioning Nodes in Stellio ... 25

Figure 12. Specification of deployable component in Stellio .. 26

Figure 13. Deployment association creation sequence diagram ... 27

Figure 14. Deployment plan creation sequence diagram. .. 28

Figure 15. Monitoring plan configuration workflow .. 29

Figure 16. Validation plan configuration workflow .. 30

Figure 17. Validation plan object generated sample ... 31

Figure 18. JSON Generation Workflow ... 31

Figure 19. Execution Workflow. ... 32

Figure 20. Adeptness plan download and execution sequence. ... 34

Figure 21. Download and deployment sequence in edge nodes of deployable agents. ... 35

Figure 22. Monitoring plan download and configuration sequence. ... 36

Figure 23. Execution workflow for monitoring plan at runtime ... 37

Figure 24. Validation workflow configuration and execution ... 38

Figure 25. Subsystems for knowledge extraction from operational data .. 40

Figure 26. Overview of uncertainty subsystem ... 41

Figure 27. Sequence diagram for the workflow of uncertainty subsystem ... 42

Figure 28. OSLC Traceability from the Stellio subscription ... 44

Figure 29. Architecture of SRPM and SRPM Bridge to MQTT .. 45

Figure 30. Implementation of bridging the MQTT and Prometheus .. 46

Figure 31. Example of transformation for Alerting Rules in Prometheus ... 46

Figure 32. Sequence diagram for the Prometheus workflow based on the configuration capabilities 47

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 1 / 51

1 PURPOSE OF THE DOCUMENT

1.1 Document structure

The structure of the document is as follows:

In Section 3, a brief definition of specified subsystems participating in the Adeptness ecosystem. The

specification of the microservices belonging to every subsystem specify the variety of collaborative

components.

Section 4 focuses on the workflow sequence to deploy and run design-operation continuum engineering for

CPSoS for each of the four stages defined above.

Finally, Section 5 summarizes the content of this document and provides the guidelines to extend the

approach to other microservice ecosystems.

1.2 Deviations from the original Description in the Grant Agreement Annex 1 Part A

1.2.1 Description of work related to deliverable in GA Annex 1 ð Part A

There are no deviations with respect to work of this deliverable.

1.2.2 Time deviations from original planning in GA Annex 1 ð Part A

Deliverable date has been delayed from M24 (2021-12-31) to M27 (2022-03-31).

1.2.3 Context deviations from the original plan in GA Annex 1 ð Part A

There are no deviations from the Annex 1.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 2 / 51

2 INTRODUCTION

A workflow is a sequence of steps involved in moving from the beginning to the end of a working process. In

the context of Adeptness, such a working process is a dynamic ecosystem, in which several microservices part

of the CPSoS enable a design-operation continuum engineering process.

Here, the workflow identifies four different stages:

¶ Test Artifact Generation, which focuses on the semi-automatic generation of validation artifacts, such

as Oracles or Test Cases.

¶ Planning, in which the plans for deploying, monitoring and validation are defined.

¶ Execution, in which the tasks and communication of the microservices at runtime is exposed, enabling

the design-operation continuum validation.

¶ Extensions, which extend the core functionality of Adeptness, and provides a closed feedback loop

for CPSoS.

The availability of a guidance to setup, configure and run microservices requires several artifacts to enable

the subscription and publication of the topics exchanged in the Adeptness ecosystem. There are three main

domain subsystems defined in the core platform:

ǒ Deployment subsystem

ǒ Validation subsystem

ǒ Monitoring subsystem

Underlying consumers of these domains are dependent on the deployment of each subsystem. Moreover,

the interaction between the different domains contains an inherent sequence at configuration time, to enable

microservice availability at runtime.

This document focuses on the steps required to enable the microservices deployment and availability at setup,

and lifecycle management at runtime.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 3 / 51

3 SUBSYSTEMS PARTICIPATING IN CPSOS

The Adeptness ecosystem provides a collaborative framework, composed of several subsystems, each one

with a specific role. The operational usage of subsystems is realized using the microservices attached to them.

Each microservice is specialized in a specific task. The interaction between the microservices, both inside the

subsystem and among subsystems, communicate through well-defined interfaces to achieve the common

objective of a continuous validation process. The deliverable D1.2 ð Interface of the microservices ð specifies

the API designed to support these interactions between microservices.

The Adeptness defined subsystems are:

¶ The Deployment subsystem, including deployment orchestrator and agents.

¶ The Monitoring and logger subsystems.

¶ The Validation subsystem, including orchestrator, agents and oracles.

¶ The Test-as-a-Service (TaaS) subsystem, as specified in D5.1. (Adaptation of TaaS for continuous

CPSoS Testing).

¶ The Test Case Generation subsystem.

¶ The Traceability subsystem, enabling Lifecycle Management.

¶ The Uncertainty subsystem, based on the results obtained from the Monitoring subsystems.

¶ The Recovery subsystem, which enables the rules and actions required to recover the normal

behaviour of the system, once a malfunction is detected at operational level.

Associated to each subsystem, there are specified one or more microservices. These are used for design and

for runtime to exchange information from/to the CPSoS, specifically, in the cloud and within defined edge

nodes.

In the document, the partners define the interactions between subsystems, forming a collaborative

interoperability at CPSoS level, and between microservices. These interactions allow the specification of the

workflow in the next Section.

In the following section, the document provides detailed information about each subsystem.

3.1 Deployment Subsystem

The deployment subsystem is explained in deliverables D1.1 and D2.2. Section 4.4 of deliverable D1.1 contains

the requirements and the first design of the subsystem. Section 4.3 of deliverable D2.2 describes exhaustively

the implementation details of the subsystem. This section contains a brief description of the subsystem.

The deployment subsystem is responsible for the installation at each of the nodes of the microservices

required to carry out a deployment plan. The subsystem will receive the order of deployment from an

automation server and is able to download the deployment plan from the repository, parse it and send the

necessary messages to the deployment agents to download and execute the artefacts contained in the plan.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 4 / 51

The defined microservices in deployment subsystem are:

¶ Deployment orchestrator microservice

¶ Deployment agent microservice

These two microservices communicate with each other via asynchronous messaging with well-defined

interfaces. These messages are defined in deliverable D1.2 - Interfaces of microservices. The instances of

microservicesõ interfaces are available in Adeptness GitLab repository: for deployment orchestrator1 and for

deployment agents2.

In the following subsections, we provide further details about defined microservices.

3.1.1 Deployment orchestrator microservice

The deployment orchestrator is an essential part of the deployment subsystem. In a scenario of continuous

integration in CPSoS, different components need to be deployed on different platforms in order to not only

instantiate the software components that contain the CPS functionality (SUT) but also those other software

artefacts that are needed for the validation of the CPSoS in operation.

The deployment orchestrator is part of the Adeptness infrastructure framework. It is an Adeptness Python

microservice that runs as a Docker container and is invoked from the automation server to execute the

deployment pipeline.

The orchestrator needs a deployment agent on each of the devices where it must deploy components. The

orchestrator and the deployment agents communicate with each other through a well-defined MQTT

interface. The orchestrator offers synchronous and asynchronous communication mechanisms. Synchronous

communication is done through a Rest API and allows external actors, such as an automation server or a

recovery service, to ask the orchestrator to execute a deployment plan. The asynchronous mechanism is

performed through the MQTT protocol and is used by the orchestrator to send the deployment orders to the

deployment agents and also to receive the deployment result from them. The orchestrator will also use this

mechanism to publish the global deployment result for a complete deployment plan to anyone who wants to

subscribe.

3.1.2 Deployment agent microservice

The deployment agent is the component that enables the remote deployment on each Edge node. It receives

and processes commands from the deployment orchestrator and, based on the content of the message

received, configures and launches new services using the corresponding method. Currently, the deployment

agent is able to deploy two types of applications: containerized applications based on Docker images and

files or executables that are downloaded and executed without containerization.

1 https://gitlab.com/adeptness/wp1/interfaces/deployment-orchestrator-interface

2 https://gitlab.com/adeptness/wp1/interfaces/deployment-agent-interface

https://gitlab.com/adeptness/wp1/interfaces/deployment-orchestrator-interface
https://gitlab.com/adeptness/wp1/interfaces/deployment-agent-interface

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 5 / 51

Two separated deployment agents have been implemented, one in Python that can be executed natively or

containerised and another one in C that runs only natively for resource constrained devices that are not

capable of running the Python environment or Docker.

3.2 Monitoring and Logger Subsystem

The monitoring subsystem is explained in deliverables D1.1 and D2.2. Section 4.5.1 of deliverable D1.1 contains

the first design of the monitoring subsystem. Section 4.5.2 of deliverable D1.1 contains the first design of the

logger subsystem. Section 5.1 of deliverable D2.2 describes exhaustively the implementation details of the

monitoring subsystem. Section 5.2 of deliverable D2.2 and section 3.3, 3.4, 4.2 and 4.3 of deliverable D2.4

describe the logger subsystem in-depth. This section contains a brief description of the two subsystems.

The monitoring subsystem shall oversee monitoring all the relevant information, from the cyber physical

systems, to validate the behaviour of the whole system. Each validation plan must be capable of executing a

series of test cases. To carry out these tests, observations must be made in the SUT, and depending on each

test case, certain system variables must be monitored. One or more monitoring agents will be deployed in

each target/edge node. These monitor agents will be configured to read the proper variables depending on

the monitoring plan. The monitoring orchestrator will configure these agents and will also trigger the order

to the monitors to start sampling the variables and publishing them so that other microservices can make use

of them.

The logger subsystem enables provisioning of the Adeptness plans as well as storage capabilities of the data

coming from monitors and verdicts coming from validation agents. It serves as an interface between other

Adeptness services (such as the Test Generator and OSCL Bridge) and the data collected from monitors and

oracles. During the project course, the logger subsystem explored two solutions: Stellio and Prometheus.

According to the analysis of the features in both solutions, the decision was to select Stellio solution as the

main solution for the logger subsystem in Adeptness. This has not prevented us from also exploring and

implementing options to connect Prometheus to the Adeptness workflow in particular scenarios.

The defined microservices and tools in monitoring subsystem are:

¶ Monitoring orchestrator

¶ Monitoring agents

¶ Trace library

Monitoring orchestrator and agents communicate with each other via a well-defined Rest-API. These

interfaces are available in Adeptness Monitoring Interfaces GitLab repository3.

The solutions and extended tools used in logger subsystem are:

¶ Stellio context broker.

¶ SenML-MQTT Stellio Bridge.

3 https://gitlab.com/adeptness/wp1/interfaces/monitoring-orchestration-interface and

https://gitlab.com/adeptness/wp1/interfaces/monitoring-agent-interface

https://gitlab.com/adeptness/wp1/interfaces/monitoring-orchestration-interface
https://gitlab.com/adeptness/wp1/interfaces/monitoring-agent-interface

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 6 / 51

¶ Prometheus Monitoring.

¶ SenML-MQTT Prometheus agent.

¶ Signal Temporal Logic (STL) runtime monitor.

The following subsections provide a brief description of these microservices and tools. For further details,

check the associated deliverable D2.3 ð Services software release for continuous monitoring in CPSoS.

3.2.1 Monitoring orchestrator microservice

The monitoring orchestrator is one of the core microservices of the Adeptness environment. It executes the

monitoring plan sent by the automation server, configuring the distributed monitors. The monitoring

orchestrator is itself an Adeptness microservice deployed as a Docker container in a cloud server.

The gist of the monitoring orchestrator lies in the monitoring plan it consumes. On the one hand, the

orchestrator provides a REST-API to receive this plan from the automation server; on the other hand, the

orchestrator uses a REST client to access the endpoint where each one of the monitor agents is offering a

REST API to be configured.

3.2.2 Monitoring agents microservices

Monitoring agents are responsible for reading variables from the field bus and publishing them via MQTT so

other microservices can use them. These monitoring agents are thus executed in the edge nodes. Monitored

variables (sensors) are specific to the functionality of each node, their values are gathered from different

sensors and field buses by the monitoring agents. Monitoring agents are configured by the monitoring

orchestrator microservice to specify how to read the variables that the monitoring agent must observe. They

must be able to access the physical interface with the configured connection settings (indicated in the

monitoring plan) and publish the values of the sensors in SenML format using MQTT.

3.2.3 Trace library

The trace library is able to trace, through MQTT, the value of source code internal variables (i.e., they are not

present in physical field buses). Thus, the source code must be instrumented to be able to use this

functionality. These variables can be further used by the validation oracles, just the same way as any other

monitored variable.

3.2.4 Stellio

Stellio4, created and maintained by EGM, is a FIWARE Generic enabler, freely accessible on GitHub5, and

released under the Apache Public License.

4 https://stellio.io
5 https://github.com/stellio-hub/stellio-context-broker

https://stellio.io/
https://github.com/stellio-hub/stellio-context-broker

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 7 / 51

Beyond the implementation of the NGSI-LD standard6, Stellio context broker is fully compliant with a "FIWARE

architecture"7. This is realised both by the management of structural and contextualized data according to

the common NGSI-LD data model, and by the integration with other components of the FIWARE ecosystem

(IoT agents, data collection ...), which enabled thanks to compliance with the NGSI-LD standard. This standard

guarantees the internal and external interoperability of the platform.

The principles implemented in the Stellio context broker are those of a modern, responsive architecture that

can scale:

¶ Business micro-services, divided according to the three main families of the NGSI-LD API, subscribed

to their topics of interest, and using data stores adapted to their business;

¶ A central message bus (Kafka) of the pub-sub type ensures the exchange of messages and events

between the components of the platform in a decoupled, extensible, scalable and responsive way.

The data produced by the various external components integrated into the platform (sensors, results of

verdicts, oracles...) are stored by the context broker in two different databases:

¶ Neo4J, for storing Information Context.

¶ PostgreSQL, for storing subscriptions/publications.

3.2.5 SenML-MQTT Stellio Bridge

The SenML Bridge is intended to get data from deployed sensors, verdicts or else oracles, a bridge has been

developed and deployed to perform the transformation process from messages received in SenML format

from an MQTT broker to an NGSI-LD based data format that can then be injected into the Stellio context

broker.

3.2.6 STL-Refined Prometheus Monitoring

STL-Refined Prometheus Monitoring (SRPM) plugin is a monitoring system with formal language, Signal

Temporal Logic (STL) refinement of alerting rule that enables it to connect to MQTT. This extension work

focuses on how the formal language STL guides the generation of monitoring rules for Prometheus.

3.2.7 SenML-MQTT Prometheus agent

MQTT Bridge is implemented within the project. It is employed to connect to the cloud broker and listen to

the configured topic in MQTT. The MQTT Bridge will output the message, which is accepted by SRPM Bridge

as input.

3.2.8 STL runtime monitor

Signal Temporal Logic (STL) is a formal, declarative specification formalism for capturing sophisticated

temporal requirements, such as safety, reachability and liveness property, for CPS/IoT applications, which are

6 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_cim009v010401p.pdf

7 https://www.fiware.org/developers/catalogue/

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_cim009v010401p.pdf
https://www.fiware.org/developers/catalogue/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 8 / 51

typically interpreted over real-time and real-valued behaviours and admit quantitative semantics to allow

measuring how far are behaviours from satisfying or violating specifications. In this extension, STL will be

utilized to guide the generation of alerting rules in Prometheus on the basis of the monitoring requirement

of the CPS system.

3.3 Validation Subsystem

The validation subsystem is responsible for performing validations of the CPSoS on different test levels,

starting from SiL, HiL and up to Operation.

The subsystem is comprised of a validation orchestrator, responsible for coordinating the validation strategy,

and several validation agents, coordinating the validation components in each of the edge nodes. The

validation itself is carried out by oracle microservices, previously generated with the DSL2Oracle tool. External

tools aid in the validation process providing access to domain-specific or legacy tools developed out of the

scope of Adeptness. The validation strategies are defined on validation plans, where all the steps to be taken

to perform the validation on the CPSoS are defined.

The defined microservices in validation subsystem are:

¶ Validation orchestrator microservice

¶ Validation agent microservice

¶ Oracle microservice

¶ External tool microservice

¶ DSL2 Oracle tool

3.3.1 Validation orchestrator microservice

The validation orchestrator microservice is in charge of managing the whole lifecycle of a validation plan in

the context of the Adeptness ecosystem. Developed in Python, the validation orchestrator is capable of

running in the major platforms where the Python interpreter or Docker is supported. All the communications

are made exclusively through APIs defined on the Adeptness architecture, meaning that the orchestrator is

also agnostic to the use-case. The microservice exposes a REST API that enables the management of validation

plans and their execution, and publishes the validation plan status and verdicts through MQTT. The validation

orchestrator interacts with validation agents deployed in edge validation platforms though their REST API,

and listens for their verdict and status changes through MQTT.

3.3.2 Validation agent microservice

The validation agent microservice is responsible for coordinating the execution of a validation plan and

components in an evaluation platform (HiL, SiL, an installation in operation, etc.). As it happens with the

validation orchestrator, the validation agent is also developed in Python, sharing the ability to be run on the

majority of platforms. All the communications are also done through standard APIs defined on the Adeptness

architecture.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 9 / 51

The agent will coordinate the Oracles, and external tools required to perform an evaluation, configuring them,

managing the execution and collecting the generated test results. The generated results are then aggregated

and published, so that the validation orchestrator is able to collect the results.

3.3.3 Oracle microservice

The oracle microservice is responsible for evaluating operational values based on inputs provided by monitors.

Test oracles defined via the DSL are integrated in the microservice and provided with capabilities to interact

with the rest of the components via it is REST and MQTT APIs. The validation agents will coordinate with the

oracle microservices for configuring them and to expect verdicts raised based on the performed evaluations.

3.3.4 External tool microservice

The external tool microservice is a convenience microservice developed with the integration of legacy,

unsupported or out of scope tools into the Adeptness ecosystem. The external tool microservice exposes a

basic API and means of managing the execution of a sub-process or external application. This API can be

extended to provide additional functionality and means to manage the tool being commanded by the external

tool microservice. For each tool that wants to be integrated on the Adeptness ecosystem, an ad-hoc

implementation of the external tool microservice is performed, creating external tool subtypes for each of the

integrated tools.

3.3.5 DSL2Oracle tool microservice

The DSL2Oracle tool, on the one hand, enables the specification of test oracles specifically designed to assess

functional and non-functional properties of CPSoS. On the other hand, it enables the automated generation

of the test oracle microservice. This tool has been developed in xTEXT8, but the test generator has been

instantiated on the cloud and integrated with a GitLab pipeline for the automated generation of the test oracle

microservice.

3.4 TaaS Subsystem

The TaaS (Test-as-a-Service) subsystem is responsible for setting up test campaigns and triggering the launch

of the validation plans associated with the test campaigns. To do so, the TaaS web interface provides tools to

ease the configuration part, also called the provisioning part, where the Stellio context broker registers the

needed components. The TaaS then uses those components to generate plans, such as Monitoring,

Deployment and Validation, which are later used by the Adeptness Plan to start the test.

Once the test campaign is launched, the TaaS front-end is notified for each new verdict, from each validation

component type, and displays those verdicts in graphs representing their evolutions in time. This dashboard

is dynamically generated based on how many validation components have been configured during the

provisioning part by the tester.

8 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 10 / 51

The only defined microservices in TaaS subsystem is the NGSI-LD socket notifier.

3.4.1 NGSI-LD socket notifier

In order to receive notifications from the Stellio logger during the testing phase, the TaaS subsystem needs

to subscribe to multiple validation components' verdict. A socket bridge API called NGSI-LD socket notifier,

receives these notifications through Stellio. The notifier dispatches them to the front-end using Web Sockets,

according to the user/tester and the right TaaS instance. Thanks to this approach, the web app can be updated

as soon as a new verdict is registered into the logger, and the user can be aware of those evolutions in real

time.

3.5 Test Generation Subsystem

The test generation subsystem is responsible for generating, automatically, test cases using a DSL (Domain-

Specific Language). The test generation subsystem follows a tool-supported model-based testing (MBT=

workflow that includes domain specific requirements, utilizes them for modelling and generates concrete and

executable test scripts to validate the embedded system under test. The test generation subsystem makes use

of an open-source MBT tool, GraphWalker, and its associated capabilities to be run as a Restful service.

3.5.1 GraphWalker as a Restful service

The following diagram in Figure 1 shows all REST API Commands used to control GraphWalker (GW) and

interact with the model. Below we also describe the commands in detail.

Figure 1. GraphWalker REST API commands

When GW is run as a Restful service, there is an API that is used to interact with it. There exist eight REST API

commands to interact with the GW service: load , hasNext , getNext , getData , setData , restart , fail

and getStatistics . Below is the description of each of these commands:

¶ REST:load

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 11 / 51

The Rest call load uploads model(s) in JSON format and resets GraphWalker with the new test.

Upload the model to the service using curl :

curl - vH "Content - Type: text/plain" -- data @<YOUR MODEL NAME IN JSON>.json

http://localhost:8887/graphwalker/load

Response: If the request was successful, the "result" will be òok".

¶ REST:hasNext

The Rest call hasNext queries the service if there are any more elements to fetch. If yes, then the

fulfilment of the stop conditions has not yet been reached.

GET Request

http://service - host:8887/graphwalker/hasNext

From a Linux terminal, using curl :

curl http://localhost:8887/graphwalker/hasNext

Response: If the request was successful, the "result" will be "ok". If there are more elements to get,

"hasNext " will be òtrue".

¶ REST:getNext

The Rest call getNext is used to get the next element from the path generation. GraphWalker will,

given the path generator, calculate what the next element should be and step one step forward in

the execution of the model. The element name is returned in the response.

GET Request

http://service - host:8887/graphwalker/getNext

From a Linux terminal, using curl:

curl http://localhost:8887/graphwalker/getNext

Response: If the request was successful, the "result" will be "ok". "currentElementName" will hold the

name of the element.

¶ REST:getData

The Rest call getData is used to ask GraphWalker for the current data values of the current model.

GET Request

http://ser vice - host:8887/graphwalker/getData

From a Linux terminal, using curl:

curl http://localhost:8887/graphwalker/getData

Response: If the request was successful, the "result" will be "ok". The "data" part will hold the data as

key value elements.

¶ REST:setData

The Rest call setData is used to set data in the current model.

http://service-host:8887/graphwalker/hasNext
http://localhost:8887/graphwalker/hasNext
http://service-host:8887/graphwalker/getNext
http://service-host:8887/graphwalker/getData

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 12 / 51

PUT Request

http://service - host:8887/graphwalker/setData/<JAVA SCRIPT>

From a Linux terminal, using curl:

curl - X PUT http://localhost:8887/graphwalker/setData/<YOUR KEY>=<YOUR

VALUE>;

Response: If the request was successful, the "result" will be "ok".

¶ REST:restart

The Rest call restart will reset currently loaded model(s) to their initial states.

PUT Request

http://service - host:8887/graphwalker/restart

From a Linux terminal, using curl:

curl - X PUT http://localhost:8887/graphwalker/restart

Response: If the request was successful, the "result" will be "ok".

¶ REST:fail

The Rest call fail terminates the path generation of the test session.

PUT Request

http://service -

host:8887/graphwalker/fail/String%20to %20explain%20the%20failure

From a Linux terminal, using curl:

curl - X PUT

http://localhost:8887/graphwalker/fail/String%20to%20explain%20the%20failure

¶ REST:getStatistics

The Rest call getStatistics will fetch the current statistics of the session.

POST Request

http://service - host:8887/graphwalker/getStatistics

From a Linux terminal, using curl:

curl http://localhost:8887/graphwalker/getStatistics

Or, using the python -m json.tool to prettify the output:

curl - s http://localhost:8887/graphwalker/getStatistics | python - m

json.tool

Response: If the request was successful, the "result" will be "ok".

3.6 OSLC Bridge Subsystem

The OSLC Bridge subsystem makes use of the information model available at the system, to enable Lifecycle

Management using OSLC (Open Services for Lifecycle Management) specification. The full description about

http://service-host:8887/graphwalker/setData/<JAVA
http://service-host:8887/graphwalker/restart
http://service-host:8887/graphwalker/fail/String%20to%20explain%20the%20failure
http://service-host:8887/graphwalker/fail/String%20to%20explain%20the%20failure
http://service-host:8887/graphwalker/getStatistics

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 13 / 51

the basics of OSLC and OSLC Bridge is available in D4.5 ð Report on traceability mechanism from operational

data to development lifecycle.

This subsystem uses an independent server (in this case, IBM Rational Team Concert Server) containing the

domain definition relevant for Adeptness, such CCM (Change and Configuration Management), QM (Quality

Management, based on test planning, test construction, and test artifact management) and RM (Requirements

Management).

3.6.1 OSLC Bridge Microservice

The OSLC Bridge brings a common standardized interface connected to product lifecycle management tools.

The full specification is available at Open Services Specifications Website9.

OSLC enables the integration of federated, shared information across tools that support different but related

domains. The most relevant for Adeptness project are:

¶ Core Specification, which defines the overall approach to OSLC-based specifications and capabilities.

These capabilities are often needed across several domains, and provides a solid foundation for

reading and writing linked data resources.

¶ Configuration and Change Management (CCM) Specification eases the management of product

change requests, activities, tasks and relationships between those, and related resources such as

requirements (Requirements Management domain) or test cases (Quality Management domain).

¶ Requirements Management (RM) Specification provides a management of requirements,

requirement collections and supporting resources defined in OSLC Core specification.

¶ Quality Management (QM) Specification defines the test plans, test cases and test results of the

software delivery lifecycle. These represent individual resources along with their relationships to other

shared resource types such change requests and requirements.

The main microservice provided by the OSLC Bridge is to receive all oracles test case execution results and

the conversion of these results in the form of standardized test case execution results and defects.

For this purpose, a REST API-based periodic subscription to data logger requests the validation results

according to the Adeptness validation plan, and the corresponding artifacts are created to be used to adapt

the validation plan to the appeared defects at HiL/SiL validation phase.

3.7 Uncertainty Subsystem

The uncertainty subsystem includes two parts:

¶ uncertainty generation at design-time.

9 https://open-services.net/specifications/

https://open-services.net/specifications/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 14 / 51

¶ uncertainty detection at run-time.

The first part, which employs various techniques such as Genetic Algorithm (GA) and Reinforcement Learning

(RL), aims to generate unforeseen situations automatically at design-time so as to collaborate with the

validation subsystem.

The second part uses the time-series data from a CPS to detect anomalies that were not known at the design-

time. The anomaly detection is further connected to the uncertainty-aware robustness assessment, which

aims to assess the robustness of a CPS against various uncertainties occurring in the run-time, e.g.,

unpredicted loading and unloading time of a passenger. The defined microservice in the uncertainty

subsystem is the uncertainty detection, which is explained in the following subsection.

3.7.1 Uncertainty detection

The uncertainty detection is responsible for detecting anomalies and poor robustness of the SUT. The anomaly

detection employs a digital twin and various machine learning techniques, e.g., Generative Adversarial

Network (GAN), to detect anomalies based on the operational data provided by the monitors. The

uncertainty-aware robustness assessment employs various statistical tests to comprehensively quantify the

robustness of the SUT under different uncertain situations caused by several uncertain factors, which can be

specified with uncertainty datatypes in the uncertainty libraries, such as uncertain mass of the passengers.

3.7.2 Recovery microservice

The recovery microservice is responsible for managing the execution of recovery actions once an uncertain

situation has been detected or a verdict in an oracle has failed. It uses the results obtained from the validation

agent and uncertainty agent in order to assess the status of the CPSoS. Then, based on the Recovery Rules

and depending on the information it receives, the Recovery Microservice decides to launch or not a specific

recovery action. The launched recovery actions are sent their corresponding microservices in order to be

executed.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 15 / 51

4 DESIGN-OPERATION CONTINUUM ENGINEERING WORKFLOW

This section explains the workflow expected for configuration and runtime of the microservices contained in

the subsystems defined in Section 3.

Here, the workflow identifies four different stages:

¶ Test Artifacts Generation: This phase is in charge of generating both Oracles and Test Cases using

automatic generation methods.

¶ Plans Definition: This phase provides the microservices to Stellio and generates the Adeptness plan,

including deployment, monitoring and validation plans.

¶ Execution: This phase is in charge of running on target platform the SiL and HiL validation.

¶ Extensions: The extensions provide plug-ins, which are not essential to the validation of CPSoS, but

provide a benefit to the execution results. In addition, the extensions feed from validation execution

and operation, and perform reasoning about uncertainty, defected tests and monitoring.

Here, for all subsystems defined in Adeptness, the workflow at configuration and runtime is established, and

dependencies along these subsystems is highlighted.

The following subsections provide a detailed sequence of the phases described in Figure 2.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 16 / 51

Figure 2. Workflow definition

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 17 / 51

4.1 Test Artifact Generation and Provision

The Test Artifact Generation and Provision refers to the automatic or semi-automatic generation of oracles

and test cases. This is realized through two components (see Figure 3):

Figure 3. Workflow to Test Artifacts Generation

4.1.1 Test Case Generation & provisioning

The Test Generator microservice take as input the requirements specification in a defined format. The format

conforms to the domain specific language (DSL) defined for the use case partners. In case of Alstom-

Bombardier, the requirements specification of the train control management system follows the Given-When-

Then style, where the Given part describes the pre-conditions, the When part describes the specified

behaviour and the Then part describes the expected changes due to the specified behaviour. While the offline

test generation acts completely on the DSL-specified requirements specification, the online test generation

functionality takes current test execution status through its log file from the Logger microservice, with the goal

to affect test generation based on the operation of the SUT.

Towards the automation of the testing process, test cases can be generated using Model based Testing (MBT).

MBT is an automated testing technique, which generates the test artefacts based on a model representing

the SUT. After specifying the requirements in Gherkin10 format, a tester can model the system using certain

modelling notations i.e. Unified Modelling Language (UML), Finite State Machine (FSM) etc. and can generate

the abstract test cases by traversing through the model elements (i.e. states and transitions). To facilitate the

modelling efforts, a Domain Specific Language (DSL) could be used to define the requirements in a well-

defined format and to extract certain information (i.e. states, transitions, guard variables and their values) from

it. A DSL contains an abstract syntax based on meta-model to provide a custom and platform independent

support for a specific domain.

The proposed MBT workflow that covers requirements specification to test verdict assessment has been

divided into three phases as shown in Figure 4.

10 https://cucumber.io/docs/gherkin/

https://cucumber.io/docs/gherkin/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 18 / 51

¶ Phase 1: Requirements description and automatic generation of supporting artefact for modelling.

¶ Phase 2: Generation of executable test scripts using Model-Based Test scrIpt GenEration fRamework

(TIGER).

¶ Phase 3: Execution of generated test scripts on simulation levels and test verdict assessment.

Figure 4. Sequence of the Test Case Generation

The first phase deals with the modelling aspect of the SUT. To model a SUT, data sources (such as code or

specification documents) are required to identify the domain specific entities. In our case, we have the

requirements specification as well as the test specification (to include the tester perspective) as an input to the

modelling. The requirements specification, in our case, is written in a specific DSL that resembles the Gherkin

format. The domain expert specifies these requirements using the Gherkin-like DSL and are used to extract

model entities, such as states and transitions, along with variables and their corresponding values involved in

the transitions. The result of Phase 1 is an FSM model in JSON or GraphML format, which is in turn used as an

input to Phase 2 to generate the executable test scripts.

In order to model the SUT, the first input is a descriptive form of requirement scenarios written in a Gherkin-

like DSL. These scenarios have pre-conditions, post-conditions and actions to specify the behaviour of the

SUT. In the Gherkin format, the precondition is expressed using the Given keyword, action is specified using

the When keyword and outcome is described using the Then keyword. Hence, in the meta-model, the top-

level element is the RequirementSpecification. The RequirementSpecification contains Requirements, each with

a unique identifier to validate the atomicity of the requirement. Each requirement contains the definition of

Precondition that specifies the initial state of the system, Trigger defining the actions required for an event

and state achieved after an event, SystemResponse specifying the state that will be achieved after the

response of a system and Time to define the timing constraint for a system to respond.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 19 / 51

We have also implemented the Xtend11 generator to extract the information from the Gherkin-like DSL

produced in the Eclipse-based Xtext editor12. The Eclipse editor provides multiple built-in features such as

highlighting the syntax based on DSL (i.e. preferences for font and colour, style for comments and keywords),

predefined templates, an outline view, and assistance for code completion, and error handling. The Xtend

generator contains the mapping between each meta-model element of defined DSL and model elements of

FSM (i.e. states, transitions etc.). It extracts the information such as model name, state name, transitions,

transition variables and their corresponding values from each requirement specified by the requirement

engineer in the editor. The validation checks to validate each requirement's atomicity, completeness and

unambiguity can be included as an advanced feature in Xtend, which is currently done manually in our case.

Figure 5. Test Case Generation and Provisioning Workflow

The sequence in Figure 5 provides an overview on the provisioning workflow for Test Case Generation. In the

first step, the Test Case Generator is populated using the Test Specification using templates and target SUT

configuration. In the second step, the domain expert provides the input for the DSL (Domain Specific

Language), in order to formalize the Requirements Model. This model is then sent to the Test Case Generator.

After this, the requirements model and the test specification provide the basis for:

¶ Mapping the test input data.

11 https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html

12 https://www.eclipse.org/Xtext/

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html
https://www.eclipse.org/Xtext/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 20 / 51

¶ Generate the target test scripts.

4.1.2 The generated scripts and location of input data is then packed into Docker images, and

provided to the Docker registry.DSL-based Oracle Generation & provisioning

A test oracle is the source that determines whether a System Under Test (SUT) behaves as expected. In the

Adeptness project, we have developed a Domain Specific Language (DSL) for the specification of test oracles

specifically designed for CPSoS. Besides, we have developed a test oracle generator that automatically

generates test oracle microservices by considering the specified test oracles with the DSL.

The workflow for generating test oracles works as follows (See Figure 2). The test engineer/validator first

specifies the test oracles of the CPSoS under test by using the DSL we have developed. The test oracle

generator generates the oracle code based on the specified DSL. These are stored into test oracle DSL files.

In a second step, the validator commits and pushes these files to a git repository (in the prototype we have

developed we use a GitLab repository, although these could be generalizable to other repositories). After

committing and pushing these files, in three completely automated steps we are able to automatically

generate the test oracle microservice:

Ɓ First, the oracle code is generated in the C programming language. For each of the specified test

oracles in the DSL, we generate individual .c and .h files.

Ɓ Second, these oracle files are obtained, cross-compiled and integrated with the Adeptness

microservice, which is dockerized.

Ɓ Third, the test oracle microservice is pushed to the Docker registry and an instance for a deployable

component entity is created in Stellio.

Figure 6. DSL-based Oracle Generation Workflow

At planning phase, the registered test oracles can be then used for the Adeptness plan, and at runtime, the

registered oracles (in Docker registry and Stellio logger) can be downloaded and instantiated on edge nodes.

4.2 Plans definition

The provisioning workflow populates Stellio with the components and microservices that will be used during

the execution of Validations.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 21 / 51

The definition has four key steps (see Figure 7):

¶ Resource Provisioning: Here other common components are defined as well. Mainly, deployable

components, nodes, the CPS and CPSoS, etc. The SUT is defined during the validation plan definition

step.

¶ Deployment Plan: Provisioning of the deployment plan, including the definition of the agents

responsible of downloading and creating the resources in the target edge nodes.

¶ Monitoring Plan: Provisioning of the monitoring agents and variables to observe the SUT.

¶ Validation Plan: Provisioning of the agents, oracles and external tools, including test inputs,

responsible for validating the SUT.

¶ JSON Generation from TaaS Interface: This step includes the aggregation of the deployment,

monitoring and validation plans to the Adeptness plan, and the generation of the files and

configurations required to run the plan.

Figure 7. Planning Workflow

The following subsections provide details about the sequences in each of the planning steps.

4.2.1 Context provisioning

In our data driven approach, all components must be configured, registered, and sent to the Logger, our

context broker (Stellio) which handles context management, time and space, in an Entities ð Relationships ð

Properties graph model. For this purpose, the TaaS interface, as a òdata producer & consumeró communicates

with Stellio in a Restful way to handle the provisioning (see D5.1 for more in depth description of the

provisioning phase).

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 22 / 51

4.2.1.1 CPSoS Specification

The features of the CPSoS that are going to be validated shall be provisioned in Stellio. For each CPS, the

monitoring variables that can be observed are also provisioned. These variables are named Sensors. The

hardware nodes where CPSs and Adeptness deployable components are running shall also be provisioned.

For each deployable component type, the model contains the associated references to the compressed file

or container image (referencing MinIO13 or a URL), and the kind of component, such as a CAN monitor, oracle,

validation agent, SUT, external tool or test input.

In a first step, the system engineers shall declare the target CPSoS, by defining:

Ɓ The CPSoS itself

Ɓ The CPS contained in the CPSoS.

Ɓ The Sensors or Monitoring Variables of CPS. These can be grouped into Sensor Groups.

Ɓ The Nodes, this is, the logical entity providing the association between physical SUT and logical

entities.

In the following subsections, we provide the details on how the context broker in Adeptness is provisioned.

CPSoS

The first step is to define the logical context of validation. For that reason, the system engineer shall specify a

logical entity òcyber-physical system of systemsó, which groups all the cyber-physical systems under validation.

For the specification, the user connects to the front-end, TaaS in Adeptness project, and provides a unique

descriptive name, and a short description of the CPSoS.

The TaaS tool parses this information and creates a new CPSoS entity in Stellio context broker.

This sequence is depicted in Figure 8. In D5.1 ð Adapted version of TaaS ð Section 3.1.1 explains the visual

interface in detail.

13 https://min.io/

https://min.io/

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 23 / 51

Figure 8. Sequence diagram for provisioning CPSoS in Stellio

CPS

The system engineer shall declare the cyber-physical systems (CPS), which are defined at the CPSoS. For

specifying a new CPS, the user should first select to which CPSoS attaches the CPS be defined. After that, a

unique descriptive name for CPS and a short description shall be provided, in order to identify the CPS and

map accordingly to the edge node. See Figure 9 for the representation of the sequence diagram associated

to the CPS specification.

Figure 9. Sequence diagram for provisioning CPS in Stellio

Sensors

A sensor in Adeptness represents a monitoring variable for a given device. In our case, this is specifically a

monitoring variable on the CPS. A generic sensor shall contain, at least the unit, the sampling rate and a

communication protocol, which will be used at runtime to transfer collected data to the Adeptness ecosystem.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 24 / 51

The user shall first select the CPS to which the sensor is attached. Every sensor is allocated to a single CPS.

specify a new sensor, selecting the CPS to which will be attached. Additionally, the user should provide a

unique sensor descriptive name, a unit, a sampling rate, and a protocol. Depending on the selected protocol,

the user shall specify protocol-specific attributes, such as data location. Finally, the sensor shall be associated

to one of the defined monitoring agents, which is the way of notifying to Stellio at runtime the sensed data in

the SUT.

The Figure 10 displays graphically the sequence described above.

Figure 10. Sequence diagram for provisioning Sensors in Stellio

The sensors can be grouped intro Sensor Groups. This allows sharing common technical characteristics to all

contained sensors such as publishing rate. The groups shall be defined after at least one leading Sensor is

defined.

Hardware Nodes

The logical entity Nodes can be directly specified to Stellio through TaaS front-end. The Figure 11 provides

the sequence for creating the hardware nodes.

ADEPTNESS ͠ 871319 PU

D5.3 ͠ Workflow and toolchain documentation

 Adeptness ï 871319 25 / 51

Figure 11. Sequence diagram for provisioning Nodes in Stellio

4.2.1.2 Deployable Components Specification

The next logical step is the specification of deployable components in Stellio through TaaS. TaaS provides an

interface to declare in the Logger the following deployable component types:

Ɓ System Under Test (SUT).

Ɓ Oracles

Ɓ Monitor Agents.

Ɓ External Tools.

Ɓ Test Inputs

Ɓ Validation Agents

This specification allows the specification and connection at deployment, monitoring and validation plans.

The System Under Test (SUT) represents the target validation entity. For our use case, SUT is a deployable

component, which is the validation subject of the validation plan. This can be some software component

attached to the physical system, such as a library, an algorithm, or any element likely to be validated.

The Oracles represent an entity, which evaluate some conditions at validation time and trigger evaluation

verdicts, representing whether the conditions at testing are met. The validation agent collects, at validation

completion, the associated oracles verdicts. The implementation and logic underlying to Oracles is

automatically generated using DSL2Oracle microservice (see Section 3.3.5), and provisioned to Stellio using

the TaaS front-end specification available in Section 4.1.2.

The Monitor Agents are configured to read the proper SUT variables during the execution of the validation

plan. These are specified at provisioning time in Stellio. The External Tools allow to integrate domain-specific

