BBl Ref. Ares(2022)2431677 - 01/04/2022

ADEPTNESS Design Operation Continuum Methods
for Testing and Deployment under Unforeseen
Conditions for CyberPhysical Systems of Systems

Adeptness

EUROPEAN COMMISSION
Horizon 2020
H2020ICT-0:2019
GA No. 871319

Deliverable No. ADEPTNESS D5.3

Deliverable Title Workflow and toolchain documentation
Deliverable Date 2022-03-31

Deliverable Type Report

Dissemination level Public

Written by UES 2022-03-20
Checked by SRL, TUW, MGEKL 2022-03-31
Approved by Executive board 2022-03-31

Status vli.1l 2022-03-20

H2020ICTF01-2019¢ 871319¢ ADEPTNESS: Desfigperation Continuum Methods for Testing and
Deployment under Unforeseen Conditions f@yberPhysical Systems of Systems

Acknowledgement

The author(s) would like to thank the partners involved with the project for their valuable comments
previous drafts and for performing the review.

Project partners

18 MGEPS Mondragon Goi Eskola Rdeknikoad ES
2 3 OROJ Orona S. Coopd ES

3 8 UESS Ulma Embedded Solutions S. CoapES

4 0 SRLS Simula Research Laboratory S. CodpNO
5 8 BTo Bombardier Transportation Sweded SE

6 8 IKLO lkerlan S. Coo@ ES

7 8 EGMO Easy Global Market SABFR

8 8 MDH 0 Malardalens Hégskol® SE

9 8 TUWG Technische Universitat Wieh AT

Disclaimer:

This project has received funding fror
innovation programme under grant agreement No 871319.

Documentinformation

Additional author(s) and contributing partners

Name Organisation

Francisco Ruiz

UES
Sergio Rodriguez
Aitor Arrieta
Goiuria Sagardui MGEP
Gorka Olalde
Franck Le Gall
Benoit Orihuela EGM
Romain Magnani
Aitor Agirre

IKL
Blanca Kremer
ShaukatAli

SRL
Liping Han
Zl atan Tucakovi L

TUW
Meixun Qu
Wasif Afzal

MDH
Amirali Piadehbasmenj

Document Change Log

Name Date Comments

V10 2022-02-15 Initial draft

Vil 2022-03-31 Added contribution from partners

Exploitable results

Exploitableresults Organisation(s) that can exploit the result

Step-by-step guidance to use microservices Consortium partners

Available toolchain and configuration Consortium partners

GONTENTS

1 PURPOSE OF THE DOCHNIT 1

1.1 DOCUMENT STRUCTURE

1.2 DEVIATIONS FROM THERGSINALDESCRIPTION IN THERANTAGREEMENANNEX1PARTA
1.2.1 Description of work related to deliverable in GA AnnéxPart A
1.2.2 Time deviations from original planning in GA Anne® Part A

S

1.2.3 Context deviations from the original plan in GA Anne& Part A

N

2 INTRODUCTION
3 SUBSYSTEMS PARTICING IN CPSOS

w

3.1 DEPLOYMENBUBSYSTEM
3.1.1 Deployment orchestrator microservice
3.1.2 Deployment agent microservice

3.2 MONITORING ANDLOGGERSUBSYSTEM
3.2.1 Monitoring orchestrator microservice
3.2.2 Monitoring agents microservices
3.2.3 Trace library
3.2.4 Stellio
3.2.5 SenMEMQTT Stellio Bridge
3.2.6 STERefined Prometheus Monitoring
3.2.7 SenMEMQTT Prometheus agent
3.2.8 STL runtime monitor

3.3 VALIDATIONSUBSYSTEM
3.3.1 Validation orchestrator microservice
3.3.2 Validation agent microservice
3.3.3 Oracle microservice
3.3.4 External tool microservice
3.3.5 DSL20racle tool microservice

3.4 TAASSUBSYSTEM
3.4.1 NGSILD socket notifier

3.5 TESTGENERATIONBUBSYSTEM

© © © © 0 0 00 N N N N O oo oo g b b W

e
© o o

3.5.1 GraphWalker as a Restful service
3.6 OSLCBRIDGESUBSYSTEM

3.6.1 OSLC Bridge Microservice
3.7 UNCERTAINT®UBSYSTEM

B e
o w R

3.7.1 Uncertainty detection

'—\
a~

3.7.2 Recovery microservice

4 DESIGNOPERATION CONNUUM ENGINEERINGORKFLOW

15

4.1 TESTARTIFACTGENERATION ANPROVISION
4.1.1 Test Case Generation & provisioning

o ~N o O,

The generated scripts and location of input data is then packed into Docker images, and provided

to the Docker registry.
4.1.2 DSlkbased Oracle Generation & provisioning
4.2 PLANS DEFINITION
4.2.1 Context provisioning
4.2.1.1 CPSoS Specification
4.2.1.2 Deployable Components Specification
4.2.2 Creation of the Deployment plan
4.2.3 Creation of the Monitoring Plan
4.2.4 Creation of the Validation Plan
4.2.5 JSON Generation from TaaS interface
4.3 EXECUTIONWORKFLOW
4.3.1 Jenkins Execution Pipeline (Trigger Adeptness plan)
4.3.2 Deployment Plan execution
43.3 Monitoring Plan execution
4.3.4 Validation Plan execution

4.3.4.1 Elevator
4.3.4.2 Train Control Management System (TCMS)

4.4 EXTENSIONS
4.4.1 Uncertainty Subsystem: Generation + Detection

4.4.1.1 Uncertainty generation at desigitime
4.4.1.2 Uncertainty detection at rurtime
4.4.2 OSLC Bridge
4.4.3 STLRefined Prometheus Monitoring plugin
4.43.1 SenML:MQTT Prometheus agent bridge the MQTT and Prometheus
4.4.3.2 STL Refinement for Alerting Rule indPnetheus

CONCLUSIONS
RISK REGISTER
QUALITYASSURANCE

ACKNOWLEDGMENTS

20
20
20
21
22
25
26
28
29
30
32
33
34
36
37
39
39
40
40
42
43
43
45
45
46

48
49
50

51

LIST OF FIGURES

Figure 1. GraphWalker REST APl COMMANGS..........uuuviiiiiicccmmieeeiiiiirieeseeesemmmmmssessssssesseassessmmmmmmsssssssssssessesssssmmmmnnnl O
Figure 2. WOrKfOW definDNc.uuiieiiii sttt emmmmms ettt e e e e e e e emmmmmms sttt e e e e e e e e e e smmmmmnsssssbssseaaeaeeeenann
Figure 3. Workflow to Test Artifacts Generation.................

Figure 4. Sequence of the Test Case Generatian
Figure 5. Test Case Generation and Provisioning WOrkfloM................oviiccceceeiiiiiiiiiiieee s cmmmmme s siivneeee e e e emmmmmme L9
Figure 6. DSibased Oracle Generation WOIKFIQW.c.iii et e e e e e 20.
Figure 7. Planning WOrKFIOW............ooiiiiiiiiceeeee e
Figure 8. Sequence diagram for provisioning CPS0S iN SEllIQ...........cuviiiiimmmene e cmmmenr e
Figure 9. Sequence diagram for provisioning CPS iN StEIIQ............vviiiimmeec e 2O
Figure 10. Sequence diagram for provisioning Sensors in Stelli0.............uvviiiccccceeeee i 24
Figure 11. Sequence diagram for provisiing Nodes in Stellio...........ccovveeiiiiiiecccmmeeee e
Figure 12. Specification of deployable component in Stellio..............viiiiiemeecc e vmrrree e smmenene e 20

Figure 13. Deployment association creation SEqUENCE AIAGIAM...........ecuuritimmeeeeeeeaireeeeeaeeeimcmmmmeeeeeeeaneeeeesensnean 27
Figure 14. Deployment plan creation SEQUENCE AIAQIAIMN.uuriiiiitimeemmire e eaitr et e e mmmmms st e s st e e e s rmmmmnme e ene 28
Figure 15. Monitoring plan configuration WOTKEND..............c.uuiiiiiceeic et rmeeeee e emmmnene e e eeee e e ane 29.
Figure 16. Validation plan configuration WOIKFIOM.oiiueiiimee et emmmmr et e e e neeeee s 30..
Figure 17. Validation plan object generated SAMPLE............coiiiii et emmmms e e e 31.
Figure 18. JSON Generation WOIKFIQUL...........uuiiiiiceeeic et rmmmeee sttt emmmneme e e et e e e e st s emmmmnnee e e e enn 31
Figure 19. EXECULION WOTKFIOWL.cieiiiiiiii it eemm et mmmeme sttt ammmmmt 4kt ee e et emmmmnme e e e e e e e e 32..
Figure 20. Adeptness plan download and eXECULION SEOUENCE...........coiurriiimmmmmreeeeatreeee et immmmns et eesaiee e e e nesmne 34
Figure 21. Download and deployment sequence in edge nodes of deployable agents..............c.ovueecccvveree e, 35.
Figure 22. Monitoring plan download and configuration SEQUENCE............uuvieiitimmecamiree ettt imememe e 36.
Figure 23. Executiomworkflow for monitoring plan @t rUNTIME...........oueiiiiiiiiiemm e e e emenn 37
Figure 24. Validation workflow configuration and ©XECULION.............ccuuiiiicmmmeeeeeeiieee et emmmnnee e e e smmmmnne 3O
Figure 25. Subsystems for knowledge extraction from operational data..................ooemmeceieiiiieeriiie s cmmeeee e 40
Figure 26. Overview of uncertainty SUDSYSIEIML..........ccouuuiiiiimeeeece e .41
Figure 27. Sequence diagram for the workflow] oncertainty SUDSYSIEM..........ooiiiiiiiiiiimmeeen e 42
Figure 28. OSLC Traceability from the Stellio SUDSCIIPLON.cviiiiiimeeen e smmmnnenee e A
Figure 29. Architecture of SRPM and SRPM Bridge to MQTT........oiiiiiiiiiimmiiiieiieee e emmmmmmsiivieeeee e e e e smmeeen s 4D
Figure 30. Implementation of bridging the MQTT and Prometheus..............ccuviieeeeece e 4B
Figure 31. Example of transformation for Alieig Rules in Prometheus...........c..oviiiiiiiececmecc e 46

Figure 32. Sequence diagram for the Prometheus workflow based on the configuration capabilities...................- 47

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

1 PURPOSE OF THE DOCHNIT

1.1 Document structure
The structure of the document is as follows:

In Section 3, a brief definition of specified subsystems participating in the Adeptness ecosystem. The
specification of the microservices hEnging to every subsystem specify the variety of collaborative
components.

Section 4 focuses on the workflow sequence to deploy and run desigmeration continuum engineering for
CPSoS for each of the four stages defined above.

Finally, Section SSummarizes the content of this document and provides the guidelines to extend the
approach to other microservice ecosystems.

1.2 Deviations from the original Description in the Grant Agreement Annex 1 Part A

1.2.1 Description of work related to deliverable in GA AnnéxPart A
There are no deviations withespect to work of this deliverable.

1.2.2 Time deviations from original planning in G®nex1d Part A
Deliverabledate has been delayed from M24 (20212 31) to M27 (202203-31)

1.2.3 Contextdeviations from the original plan in GA AnneX¥Part A
There are no deviations from the Annex 1.

s Adeptness i 871319 1/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

2 INTRODUCTION

A workflow is a sequence of steps involved in moving from the beginning to the end of a working process. In
the context of Adeptness, suchwaorking process is a dynamic ecosystem, in which several microservices part
of the CPS0S enable a desigoperation continuum engineering process.

Here,the workflow identifiesfour different stages

1 Test Artifact Generation, which focuses on the seauitomatic generation of validation artifacts, such
as Oracles or Test Cases.

1 Planning, in which the plans for deploying, monitoring and validation are defined.

1 Execution, in which the tasks and communication of the microservices at runtdexposed, enabling
the designoperation continuum validation.

1 Extensions, which extend the core functionality of Adeptneard provides a closed feedback loop

for CPSoS.

The availability of a guidance to setup, configure and run microservices requires several artifacsable
the subscription and publication of the topics exchanged in the Adeptness ecosystem. There are three main
domain subsystems defined in the core platform:

0 Deployment subsystem
0 Validation subsystem
0 Monitoring subsystem

Underlying consumers of thesdomains are dependent on the deployment of each subsystem. Moreover,
the interaction between the different domains contains an inherent sequence at configuration time, to enable
microservice availability at runtime.

This document focuses on the steps regad to enable the microservices deployment and availability at setup,
and lifecycle management at runtime.

%’ Adeptness i 871319 2/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

3 SUBSYSTEMS PARTIAIRG IN CPSOS

The Adeptness ecosystem provides a collaborative framewadinposed of several subsystesneach one

with a specific role. The operational usage of subsystems is realized using the microservices attached to them.
Each microservicés specialized in aspecifictask The interaction between the microservices, baitside the
subsystem and among subsystems, communicdteough welldefined interfaces to achieve the common
objective of a continuous validation proces$he deliverable D1.8 Interface of the microserviced specifies

the API desigred to support these nteractionsbetween microservices.

The Adeptness defined subsystems are:

The Deployment subsystem, including deployment orchestrator and agents.
The Monitoring and logger subsystems

The Validationsubsystem, incluthg orchestrator, agents and oracles.

=A =| =4 =4

The Testas-a-Service (TaaS) subsystem, as specified in D5.1. (Adaptation of TaaS for continuous
CPSoS Testing).

The TestCaseGenerationsubsystem.

The Traceabilitpubsystem, enabling Lifecycle Management.

The Uncerainty sibsystem, based on the results obtained from the Monitoring subsystems.

=A =4 =4 =

The Recoverysubsystem, which enables the rules and actions required to recover the normal

behaviour of the system, once a malfunction is detected at operatiotealel

Associated to each subsystem, there are specified one or more microservices. These are used for design and
for runtime to exchange information from/to theCPSo0S, specifically, in the cloud and within defined edge
nodes.

In the document, the partners define the interactions between subsystems, forming a collaborative
interoperability at CPSoS level, and between microservices. These interactions allow the specification of the
workflow in the next Section.

In the following section, the docment provides detailed information about each subsystem.

3.1 Deployment Subsystem

The deployment subsystem is explained in deliverables D1.1 and D2.2. Section 4.4 of deliverable D1.1 contains
the requirements and the first design of the subsystem. Section df 8leliverable D2.2 describes exhaustively
the implementation details of the subsystem. This section contains a brief description of the subsystem.

The deployment subsystem is responsible for the installation at each of the nodes of the microservices
required to carry out adeployment plan. The subsystem will receive the order of deployment from an
automation server and is able to download the deployment plan from the repository, parse it and send the
necessary messages to the deployment agemtsdownload and execute the artefacts contained in the plan.

%’ Adeptness i 871319 3/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

The defined microservices in deployment subsystem are:

1 Deployment orchestrator microservice

1 Deployment agent microservice

These two microservices communicate with each other via asynchronousssaging with welldefined

interfaces. These messages are defined in deliverable Dll&erfaces of microservices. The instances of
microservicesd interf ac kabremsitay:fa deploymenbolrceestratotandfdre pt nes s
deploymentagents’.

In the following subsections, we provide further details about defined microservices.

3.1.1 Deployment orchestrator microservice

The deployment orchestrator is an essential part of the deployment subsystem. In a scenario of continuous
integration in CPSo0S, different components need to be deployed on different platforms in order to not only
instantiate the software components that cain the CPS functionalitySUT)but also those other software
artefacts thatare needed for the validation othe CPSoS in operation.

The deployment orchestrator is part of thé&deptness infrastructure framework. It is an Adeptness Python
microservice that runs as ®ocker containerand is invoked from the automation server to execute the
deployment pipeline

The orchestrator needs a deployment agent on each of tldeviceswhere it must deploy componentsThe
orchestrator andthe deployment agents communicate with each other through a welldefined MQTT
interface.The orchestrator offers synchronous and asynchronous communication mechanisms. Synchronous
communication is done through a Rest API and allows external actorghsas an automation server or a
recovery service, taask the orchestrator toexecutea deployment plan. The asynchronous mechanism is
performed through the MQTT protocol and is used by the orchestrattur send the deployment orders tdahe
deployment agents and also to receive the deployment result from theithe orchestrator will also use this
mechanism topublishthe global deploymentresultfor a complete deployment plan to anyone who wants to
subscribe.

3.1.2 Deployment agent microservice

The deployment agent is the component that enables the remote deployment on each Edge node. It receives
and processes commands fromhe deployment orchestrator and, based on the content of the message
received, configures and launches new services using the corresponding method. Currently, the deployment
agent is able to deploy two types of applications: containerized applications basedDocker images and

files or executables that are downloaded and executed without containerization.

1 https://gitlab.com/adeptness/wpl/interfaces/deploymeatchestratorinterface

2 https://gitlab.com/adeptness/wpl/interfaces/deploymeagent interface

%’ Adeptness i 871319 4/51

https://gitlab.com/adeptness/wp1/interfaces/deployment-orchestrator-interface
https://gitlab.com/adeptness/wp1/interfaces/deployment-agent-interface

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

Two separated deployment agents have been implemented, one in Python that carekecutednatively or
containerisedand another one in C that runs only natively for resource constrained devices that are not
capable of running the Python environment or Docker.

3.2 Monitoring and Logger Subsystem

The monitoring subsystem is explained in deliverables D1.1 and D2.2. Sectiorofidellverable D1.1 contains

the first design of the monitoring subsystem. Section 4.5.2 of deliverable D1.1 contains the first design of the
logger subsystem. Section 5.1 of deliverable D2.2 describes exhaustively the implementation details of the
monitoring subsystem. Section 5.2 of deliverable D2.2 and section 3.3, 3.4, 4.2 and 4.3 of deliverable D2.4
describe the logger subsystem idepth. This section contains a brief description of the two subsystems.

The monitoring subsystem shall oversee monitoriral the relevant information, from the cyber physical
systems, to validate the behaviour of the whole system. Each validation plan must be capable of executing a
series of test cases. To carry out these tests, observations must be made in the SUT, arddiag on each

test case, certain system variables must be monitored. One or more monitoring agents will be deployed in
each target/edge node. These monitor agents will be configured to read the proper variables depending on
the monitoring plan. The monitoring orchestrator will configure these agents and will also trigger the order
to the monitors to start sampling the variables and publishing them so that other microservices can make use
of them.

The logger subsystem enables provisioning of teleptness plans as well as storage capabilities of the data
coming from monitors and verdicts coming from validation agents. It serves as an interface between other
Adeptnessservices (such as the Test Generator and OSCL Bridge) and the dakactedl from monitors and
oracles. During the project course, the logger subsystem explored two solutions: Stellio and Prometheus.

According to the analysis of the features in both solutions, the decision was to select Stellio solution as the
main solutionfor the logger subsystem in Adeptness. This has not prevented us from also exploring and
implementing options to connect Prometheus to the Adeptness workflow in particular scenarios.

The defined microservices and tools in monitoring subsystem are:

1 Monitoring orchestrator
1 Monitoring agents
1 Trace library

Monitoring orchestrator and agents communicate with each other via a wadfined RestAPIl. These
interfaces are available iAdeptness Monitoring Interfaces GitLab repositéry

The solutions and exdnded tools used in logger subsystem are:

1 Stelliocontext broker.

1 SenML:MQTT Stellio Bridge.

3 https://gitlab.com/adeptness/wpl/interfaces/monitoringrchestrationinterfaceand
https./gitlab.com/adeptness/wpl/interfaces/monitoringgentinterface

%’ Adeptness i 871319 5/51

https://gitlab.com/adeptness/wp1/interfaces/monitoring-orchestration-interface
https://gitlab.com/adeptness/wp1/interfaces/monitoring-agent-interface

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

1 PrometheusMonitoring.
1 SenMLEMQTT Prometheus agent

1 Signal Temporal LogicTL runtime monitor.

The following subsections provide a brief description of thes@croservices and toolsFor further details,
check the associated deliverable D2d3Services software release for continuous monitoring in CPSoS.

3.2.1 Monitoring orchestrator microservice

The monitoring orchestrator is one of the core microservices of thdeptness environment. lexecutes the
monitoring plan sent by the automation server, configuring the distributed monitor§he monitoring
orchestratorisitselfan Adeptness microservicdeployedas a Daker container ina cloud server.

The gist of the monitoring orchestrator lies in the monitoring plan it consumes. @re one hand the
orchestrator provides a RESAPI to receivethis planfrom the automation serveron the other hand, the
orchestrator uses a REST client to access the endpoint where each one of the monitor agents is offering a
REST API to be configured.

3.2.2 Monitoring agents microservices

Monitoring agents are responsibléor reading variablesrom the field busand publishing them via MQTT so
other microservices can use them. Thes®nitoring agents are thus executed in the edge nodeslonitored
variables (sensors) are specific to the functionality of each node, their values are gathered from different
sensors and field buses by thenonitoring agents Monitoring agents are configured by the monitoring
orchestrator microservice to specify how to read the variablkbsit the monitoring agent must observeThey
must be able to access the physical interface with tleenfigured connection settings(indicaed in the
monitoring plan)and publish the values of the sensois SenML format using MQTT.

3.2.3 Trace library

The trace library is able to tragghrough MQTT, the value of source codaternal variabledi.e., theyare not
present in physicalfield buse9. Thus, the source code must be instrumented to be able to use this
functionality. These variables can be further used by the validation oracles, just the same way as any other
monitored variable

3.2.4 Stellio

Stellid, created and maintained by EGM, is a FIWARE Generic enabler, freely accessible on Gigtddb
released under the Apache Public License.

4 https:/stellio.io

5 https://github.com/stellichub/stellio contextbroker

%’ Adeptness i 871319 6/51

https://stellio.io/
https://github.com/stellio-hub/stellio-context-broker

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

Beyond the implementation of the NGSLD standard, Stelliocontext broker isully compliart with a "FIWARE
architecture”. This is realisedoth by the management of structural and contextualized data according to
the common NGSILD data model, and by the integration with other components of the FIWARE ecosystem
(IoT agents, dataollection ..), whichenabled thanks to compliance with the NG&D standard This standard
guarantees the internal and external interoperability of the platform.

The principles implemented in the Stellio context broker are those of a modern, responsive architetharte
can scale:

1 Business micreservices, divided according to the three main families of the N&BI API, subscribed
to their topics of interest, and using data stores adapted to their business;

1 A central message bus (Kafka) of the pidub type ensures theexchange of messages and events
between the components of the platform in a decoupled, extensible, scalable and responsive way.

The data produced by the various external components integrated into the platform (sensors, results of
verdicts, oracles.)are stored by the context broker in two different databases

1 Neo4J, for storing Information Caext.
1 PostgreSQL, for storing subscriptions/publications

3.2.5 SenMEMQTT Stellio Bridge

The SenML Bridge is intended to get data from deployed sensors, verdictelse oracles, a bridge has been
developed and deployed to perform the transformation process from messages received in SenML format
from an MQTT broker to an NGSILD based data format that can then be injected into the Stellio context
broker.

3.2.6 STERefined Pometheus Monitoring

STLRefined Prometheus Monitoring (SRPM) plugin is a monitoring system with formal language, Signal
Temporal Logic (STL) refinement of alerting rule that enables it to connect to MQTT. This extension work
focuses on how the formal langage STL guides the generation of monitoring rules for Prometheus.

3.2.7 SenMEMQTT Prometheus agent

MQTT Bridge is implemented within the project. It is employed to connect to the cloud broker and listen to
the configured topic in MQTT. The MQTT Bridge valitput the message, which is accepted by SRPM Bridge
as input.

3.2.8 STL runtime monitor

Signal Temporal Logic (STL) is a formal, declarative specification formalism for capturing sophisticated
temporal requirements, such as safety, reachability and livenesgpprty, for CPS/IoT applications, which are

8 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_cim009v010401p.pdf

7 https://www.fiware.org/developers/catalogue/

%’ Adeptness i 871319 7151

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_cim009v010401p.pdf
https://www.fiware.org/developers/catalogue/

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

typically interpreted over reatime and realvalued behaviours and admit quantitative semantics to allow

measuring how far are behaviours from satisfying or violating specifications. In this extension, STie will

utilized to guide the generation of alerting rules in Prometheus on the basis of the monitoring requirement
of the CPS system.

3.3 Validation Subsystem

The validation subsystem is responsible for performing validations of the CPSoS on different tess,level
starting from SiL, HiL and up to Operation.

The subsystem is compriseaf a validation orchestrator, responsible for coordinating the validation strategy,
and several validation agents, coordinating the validation components in each of the edge nodés T
validation itself is carried out by oracle microservices, previously generated with the DSL2Oracle tool. External
tools aid in the validation process providing access to domapecific or legacy tools developed out of the
scope of Adeptness. The valid#on strategies are defined on validation plans, where all the steps to be taken

to perform the validation on the CPSoS are defined.

The defined microservices in validation subsystem are:

Validation orchestrator microservice
Validationagent microservice
Oracle microservice

External tool microservice

DSL2 Oracle tool

=A =/ =4 =4 -4

3.3.1 Validation orchestrator microservice

The validation orchestrator microservice is in charge of managing the whole lifecycle of a validation plan in
the context of the Adeptnessecosystem.Developed in Python, the validation orchestrator is capable of
running in the major platforms where the Python interpreter or Docker is supported. All the communications
are made exclusively through APtefined on the Adeptnessarchitecture,meaningthat the orchestratoris
alsoagnosticto the use-case.The microservice exposes a REST API that enables the management of validation
plans and their execution, and publishes tivalidationplan statusand verdictsthrough MQTT.The validation
orchestrator interacts with validatioagents deployed in edge validation platforms though their REST API,
and listens for their verdict and status changes through MQTT.

3.3.2 Validation agent microservice

The validatim agent microservice is responsible for coordinating the execution of a validation plan and
components in an evaluation platform (HiL, SiL, an installation in operation, etc.). As it happens with the
validation orchestrator, the validation agent is alsodgoped in Python, sharing the ability to be run on the
majority of platforms. All the communications are also done through standard APIs defined onAtleptness
architecture.

%’ Adeptness i 871319 8/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

The agent will coordinate the Oracles, and external tools requiredrform an evaluation, configuring them,
managing the execution and collecting the generated test results. The generated resuéishen aggregated
and published, so that the validation orchestrator is able to collect the results.

3.3.3 Oracle microservice

The oracle microservice is responsible for evaluating operational values based on inputs provided by monitors.
Test oracles defined via the DSL are integrated in the microservice and providid capabilities to interact
with the rest of the components via is REST and MQTT APIs. The validation agents will coordinate with the
oracle microservices for configuring them and to expect verdicts raidmsed on the performed evaluations.

3.3.4 Externdtool microservice

The external tool microservice is a convenience microservice developed with the integration of legacy,
unsupported or out of scope tools into theAdeptnessecosystem. The external tool microservice exposes a
basic API and meas of managing the execution of a sulprocess or external application. This API can be
extended to provide additional functionality and means to manage the tool being commanded by the external
tool microservice. For each tool that wants to be integrated dhe Adeptnessecosystem, an achoc
implementation of the external tool microservice is performed, creating external tool subtypes for each of the
integrated tools.

3.3.5 DSL20Oracle toahicroservice

The DSL20Oracle tool, on the one hand, enables theesffication of test oracles specifically designed to assess
functional and nonfunctional properties of CPS0S. On the other hand, it enables the automated generation
of the test oracle microservice. This tool has been developed in XTEXTt the test geneator has been
instantiated on the cloud and integrated with &itLabpipeline for the automated generation of the test oracle
microservice.

3.4 TaaS Subsystem

The TaaS (Tests-a-Service) subsystem is responsible for setting up test campaigns and triggering the launch
of the validation plans associated with the test campaigns. To do so, the TaaS web interface provides tools to
ease the configuration part, alsoatled the provisioning part, where¢he Stellio context broker registerthe
needed components. The TaaS then uses those components to generate plans, such as Monitoring,
Deployment and Validation, which are later used by the Adeptness Plan to start the tes

Once the test campaign is launchethe TaaS frontend is notified for each new verdict, from each validation
component type, and displays those verdicts in graphs representing their evolutions in time. This dashboard
is dynamically generated based ondw many validation components have been configured during the
provisioning part by the tester.

8 https://www.eclipse.org/Xtext/

%’ Adeptness i 871319 9/51

https://www.eclipse.org/Xtext/

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

The only defined microservices in TaaS subsystem is the N&B$ocket notifier.

3.4.1 NGSILD socket notifier

In order to receive notifications from the Stellio lggr during the testing phase, the TaaS subsystem needs
to subscribe to multiple validation components' verdich socket bridge API calledNGStLD socket notifier
receives these notifications through Stellio. The notifitspatches them to the frontend using WebSockes,
according to the user/tester and the right TaaS instance. Thanks to this approach, the web app can be updated
as soon as a new verdict is registered into the logger, and the user can be aware of those evolutions in real
time.

3.5 Test Geeration Subsystem

The test generation subsystem is responsible for generating, automatically, test cases using a DSL (Pomain
Specific Language). The test generation subsystem follows a-ggported modelbased testing (MBT=
workflow that includes domairspecific requirements, utilizes them for modelling and generates concrete and
executable test scripts to validate the embedded system under test. The test generation subsystem makes use
of an open-source MBT tool, GraphWalker, and its associated capagditd be run as a Restful service.

3.5.1 GraphWalker as a Restful service

The following diagramin Figure 1 shows all REST APl Commands used to control GraphWa(at) and
interact with the model. Below we also describe the commands in detail.

GraphWalker REST APl Commands

e

getStatistics

getData setData

Figurel GraphWalker RESAPI commands

When GW is run as a Restful service, there is an API that is used to interact with it. There exist eight REST API
commands to interact with the GW servicémad , hasNext , getNext , getData , setData |, restart |, fail
and getStatistics . Below is thedescription of each of these commands:

1 REST:load

%“ Adeptness i 871319 10/51

ADEPTNESS 871319 PU

D5.3 7

Workflow and toolchain documentation

The Rest calbad uploads model(s) in JSON format and resets GraphWalker with the new test.
Upload the model to the service usingurl

curl -vH"Content - Type: text/plain” -- data @<YOUR MODEL NAME IN JSON>.json
http://localhost:8887/graphwalker/load

Responself the request was successful, theesult' will be k.

REST:hasNext
The Rest calhasNext queries the service if there are any more elements to fetch. If yes, then the
fulfilment of the stop conditions has not yet been reached.

GET Request

http://service - host:8887/graphwalker/hasNext |

From a Linux terminal, usingurl

curl http://localhost:8887/graphwalker/hasNext |

Responself the request was successful, theesult' will be 'ok". If there are more elements to get,
"hasNext " wi true". be 0

REST:getNext

The Rest caljetNext is used to get the next element from the path generation. GraphWalker will,
given the path generator, calculate what the next element should be and step one step forward in
the execution of the model. The element name is returned in the response.

GET Regest

http://service - host:8887/graphwalker/getNext |

From a Linux terminal, using curl:

curl http://localhost:8887/graphwalker/getNext |

Responself the request was successful, theeult' will be 'ok". "currentElementNamewill hold the
name of the element.

REST:getData
The Rest calfjetData is used to ask GraphWalker for the current data values of the current model.

GET Request

http://ser vice - host:8887/graphwalker/getData |

From a Linux terminal, using curl:

curl http://localhost:8887/graphwalker/getData |

Responself the request was successful, theeSult' will be 'bk". The "data" part will hold the data as
key value elements.

REST:setData
The Rest cabetData is used to set data in the current model.

%’ Adeptness i 871319 11/51

http://service-host:8887/graphwalker/hasNext
http://localhost:8887/graphwalker/hasNext
http://service-host:8887/graphwalker/getNext
http://service-host:8887/graphwalker/getData

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

PUT Request
http://service - host:8887/graphwalker/setData/<JAVA SCRIPT>

From a Linux terminal, using clir

curl - X PUT http://localhost:8887/graphwalker/setData/<YOUR KEY>=<YOUR
VALUE>;

Responselif the request wassuccessful, théresult' will be 'bk'".

1 REST:restart
The Rest call restart will reset currently loaded model(s) to their initial states.

PUT Requst
http://service - host:8887/graphwalker/restart |

From a Linux terminal, using curl:
curl - X PUT http://localhost:8887/graphwalker/restart |

Responself the request was successful, theesult' will be 'ok".

1 REST:fail
The Rest callail terminates the path generation of the test session.

PUT Request

http://service =
host:8887/graphwalker/fail/String%20to %20explain%20the%20failure

From a Linux terminal, using curl:

curl -XPUT
http://localhost:8887/graphwalker/fail/String%20t0%20explain%20the%?20failure

1 REST:getStatistics
The Rest call getStatistics will fetch the current statistics of the session.

POSTRequest
| http://service - host:8887/graphwalker/getStatistics |

From a Linux terminal, using curl:
| curl http://localhost:8887/graphwalker/getStatistics |

Or, using the python-m json.tool to prettify the output:

curl - s http://localhost:8887/graphwalker/getStatistics | python -m
json.tool

Responselif the request was successful, theesult' will be "ok

3.6 OSLC Bridge Subsystem

The OSLC Bridge subsystem makes use of the information madelilable at the system, to enable Lifecycle
Management using OSLC (Open Services for Lifecycle Management) specificdtenfull description about

s Adeptness i 871319 12 /51

http://service-host:8887/graphwalker/setData/<JAVA
http://service-host:8887/graphwalker/restart
http://service-host:8887/graphwalker/fail/String%20to%20explain%20the%20failure
http://service-host:8887/graphwalker/fail/String%20to%20explain%20the%20failure
http://service-host:8887/graphwalker/getStatistics

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

the basics of OSLC and OSLC Bridge is available in [@3/R®port on traceability mechanism from operatioha
data to development lifecycle

This subsystem uses an independent server (in this case, IBM Rational Team Concert Server) containing the
domain definition relevant for Adeptness, such CCM (Change and Configuration Management), QM (Quality
Management, basd on test planning, test construction, and test artifact management) and RM (Requirements
Management).

3.6.1 OSLC Bridge Microservice

The OSLC Bridge brings a common standardized interface connected to product lifecycle management tools.
The full specificatioris available aDpen Services Specifications Website

OSLC enables the integration of federated, shared information across tools that support different but related
domains. The most relevant fohdeptnessproject are:

91 Core Specification, whitdefines the overall approach to OSLBased specifications and capabilities.
These capabilities are often needed across several domains, and provides a solid foundation for
reading and writing linked data resources.

1 Configuration and Change ManagemenfCQM) Specification eases the management of product
change requests, activities, tasks and relationships between those, and related resources such as
requirements (Requirements Management domain) or test cases (Quality Management domain).

1 Requirements Managemnt (RM) Specification provides a management of requirements,
requirement collections and supporting resources defined in OSLC Core specification.

1 Quality Management(QM) Specification defines the test plans, test cases and test results of the
softwaredelivery lifecycle. These represent individual resources along with their relationships to other

shared resource types such change requests and requirements.

The main microservice provided by the OSLEBidgeis to receive all oracles test case executiorsués and
the conversion of these results in the form of standardized test case execution results and defects.

For this purpose, a REST AP&sed periodic subscription to data logger requests the validation results
according to the Adeptness validation ptg and the corresponding artifacts are created to be used to adapt
the validation plan to the appeared defects at HiL/SiL validation phase.

3.7 Uncertainty Subsystem

The uncertainty subsystem includes two parts:

9 uncertainty generation at desigitime.

9 https://open-services.net/specifications/

%’ Adeptness i 871319 13/51

https://open-services.net/specifications/

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

1 uncertairty detection at rurrtime.

The first part, which employs various techniques such as Genetic Algorithm (GA) and Reinforcement Learning
(RL), aims to generate unforeseen situations automatically at dedigre so as to collaborate with the
validation subsystm.

The second part uses the timseries data from a CPS to detect anomalies that wex known at the design
time. The anomaly detection is further connected to the uncertairdyare robustness assessment, which
aims to assess the robustness of a CPSamgt various uncertainties occurring in the ruime, e.g.,
unpredicted loading and unloading time of a passenger. The defined microservice in the uncertainty
subsystem is the uncertainty detection, which is explained in the following subsection.

3.7.1 Uncertdnty detection

The uncertainty detection is responsible for detecting anomalies and poor robustness of the SUT. The anomaly
detection employs a digital twin and various machine learning techniques, e.g., Generative Adversarial
Network (GAN), to detect anormalies based on the operational data provided by the monitors. The
uncertaintyaware robustness assessment employs various statistical tests to comprehensively quantify the
robustness of the SUT under different uncertain situations caused by several urindidators, which can be
specified with uncertainty datatypes in the uncertainty libraries, such as uncertain mass of the passengers.

3.7.2 Recovery microservice

The recovery microservice is responsible for managing the execution of recovery actions once agrtanc
situation has been detected or a verdict in an oracle has failed. It uses the results obtained from the validation
agent and uncertainty agent in order to assess the status of the CPSo0S. Then, based on the Recovery Rules
and depending on the informaion it receives, the Recovery Microservice decides to launch or not a specific
recovery action. The launched recovery actions are sent their corresponding microservices in order to be
executed.

%’ Adeptness i 871319 14 /51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

4 DESIGNOPERATION CONNUUM ENGINEERINGORKFLOW

This sedbn explains the workflow expected for configuration and runtime of the microservices contained in
the subsystems defined in Section 3.

Here,the workflow identifiedour different stages

1 Test Antifacts GeneratianThis phase is in charge of generatingpth Oracles and Test Cases using
automatic generation methods.

1 Plans DefinitionThis phase provides the microservices to Stellio and generates the Adeptness plan,
including deployment, monitoring and validation plans.

1 Execution This phase is in chargefounning on target platform the SiL and HiL validation.

1 ExtensionsThe extensions provide plugns, which are not essential to the validation of CPSoS, but
provide a benefit to the execution result$n addition, the extensions feed from validation exe@un

and operation, and perform reasoning about uncertainty, defected tests and monitoring.

Here, for all subsystems defined in Adeptness, the workflow at configuration and runtime is established, and
dependencies along these subsystems is highlighted.

Thefollowing subsections provide a detailed sequence of the phases describeBigure2.

%’ Adeptness i 871319 15/51

ADEPTNESS 871319
D5.3 7~ Workflow and toolchain documentation

Test artifacts Generation

Automatic oracles generation + Autornaltic test cases
Oracles provisioning genaration

Plans definition - 3
Test context provisioning

b

Deployment plan

Maonitoring plan

Validation plan

k.

JSON Generation from TaaS
Interface

Execution w

—_—
Jankins pipeling
exacution

Execute
Daployment Plan
e —

 ——
w

Execute
Monitoring Plan
—

i

P
Execute
Validation Plan

Extensions

[Uncertainty detection] [Mew sue creation in RTC

[Recovery] [Prometheus monitoring

Figure2. Workflow definition

% Adeptness i 871319

PU

16 /51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation
4.1 Test ArtifactGeneration and Provision

The Test Artifact Generation and Provision refers to the automatic or samtiomatic generation of oracles
and test cases. This is realized through two components (Ségure3):

Test artifacts Generation

\ (Automatic test cases
generation

Automatic oracles
generation + Oracles
provisioning

\4

Figure3. Workflow to Test Artifacts Generation

4.1.1 Test Case Generation & provisioning

The Test Generator microservice take as input the requirements specification in a dkforenat. The format
conforms to the domain specific language (DSL) defined for the use case partners. In case of Alstom
Bombardier, the requirements specification of the train control management system followsGhen When

Then style, where theGiven part describes the preconditions, the When part describes the specified
behaviour and the Then part describes the expected changes due to the specified behaviour. While the offline
test generation acts completely on the DSdpecified requirementsspecification, the online test generation
functionality takes current test execution status through its log file from the Logger microservice, with the goal
to affect test generation based on the operation of the SUT.

Towards the automation of the testingrocess, test cases can be generated using Model based Testing (MBT).
MBT is an automated testing technique, which generates the test artefacts based on a model representing
the SUT. After specifying the requirements @herkirt® format, a tester can modethe system using certain
modelling notations i.e. Unified Modelling Language (UML), Finite State Machine (FSM) etc. and can generate
the abstract test cases by traversing through the model elements (i.e. states and transitions). To facilitate the
modelling efforts, a Domain Specific Language (DSL) could be used to define the requirements in a well
defined format and to extract certain information (i.e. states, transitions, guard variables and their values) from
it. A DSL contains an abstract syntax based imeta-model to provide a custom and platform independent
support for a specific domain.

The proposed MBT workflow that covers requirements specification to test verdict assessment has been
divided into three phases as shown irigure4.

10https://cucumber.io/docs/gherkin/

%’ Adeptness i 871319 17 /51

https://cucumber.io/docs/gherkin/

ADEPTNESS 871319
D5.3 7~ Workflow and toolchain documentation

PU

1 Phase 1: Requirements description and automatic generation of supporting artefact for modelling.
1 Phase 2: Generation of executable test scripts using MeBelked Test script GenErationaiRework
(TIGER).

1 Phase 3: Execution of generated test scripts on simulation levels and test verdict assessment.

Test Specn

Domain

Phase 3

O3

Reqi"ffnents

Domaln Knowledge
Expert m JSON Software-in-the-Loop
Tester Model L —
erkin-DSL Artefac‘:t : Modelling Tool [N E
o containing Mapping <> libra
Requirements States and (Traceability) Tl 34
Variables for XML
FSM | Phase 2 ' Signals” Names
Xtend
Generator

Stopping
Condition

‘Wgnal Information Extracter for xml ‘

(cliaapper Mapping rules to
ap Logical Names and values

of Test Data from Json with
Technical Name from xml

@ Test verdict
Test Execution
Platform
e

N

Generator
Extracter
for Test
cases

15

GraphWalker

JSON
Abstract
Test cases

Abstract Test
Case Generator

Test case Concretizer '

2.3

Test Script Implementation Details

I

0

- Hardware-
Test Script Generator in-the-Loop
Test steps in (Test Rack)

Model-Based Test scrlpt GenEration fRamework (TIGER) Ci Scripts

Figure4. Sequence of the Test Case Generation

The first phase deals with the modelling aspect of the SUT. To mod8IAT, data sources (such as code or
specification documents) are required to identify the domain specific entities. In our case, we have the
requirements specification as well as the test specification (to include the tester perspective) as an input to the
modelling. The requirements specificatipm our case is written in a specific DSL that resembles the Gherkin
format. The domain expert specifieshese requirements using the Gherkilike DSL and are used to extract
model entities, such as states andatrsitions, along with variables and their corresponding values involved in
the transitions. The result of Phase 1 isiSM model in JSON or GraphMbrmat, whichis in turn used as an
input to Phase 2 to generate the executable test scripts.

In order to model the SUT, the first input is a descriptive form of requirement scenarios written in a Gherkin
like DSL. These scenarios have grenditions, postconditions and actions to specify the behaviour of the
SUT. In the Gherkin format, the precondition is ergsed using the Given keyword, action is specified using
the When keyword and outcome is described using the Then keyword. Hence, in the rmatalel, the top-

level element is theRequirementSpecificatiomheRequirementSpecificatiamontains Requirementsgach with

a unique identifier to validate the atomicity of the requirement. Each requirement contains the definition of
Precondition that specifies the initial state of the system, Trigger defining the actions required for an event
and state achieved afir an event, SystemResponse specifying the state that will be achieved after the
response of a system and Time to define the timing constraint for a system to respond.

S‘ Adeptness i 871319

18/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

We have also implemented the Xterddlgenerator to extract the information from the Ghenhkilike DSL
produced in the Eclipsebased Xtext editol> The Eclipse editor provides multiple builh features such as
highlighting the syntax based on DSL (i.e. preferences for font and colour, style for comments and keywords),
predefined templates, an otline view, and assistance for code completion, and error handling. The Xtend
generator contains the mapping between each metaodel element of defined DSL and model elements of
FSM (i.e. states, transitions etc.). It extracts the information such as moalele, state name, transitions,
transition variables and their corresponding values from each requirement specified by the requirement
engineer in the editor. The validation checks to validate each requirement's atomicity, completeness and
unambiguity canbe included as an advanced feature in Xtend, which is currently done manually in our case.

- Test Case ADEPTNESS]
> Docker registry Stellio
o i H |

Test Spefication|

Requirements Model

Requirements Specification

Domain Expert Mapping Test Data

Test Script Generation

Push docker image

T Create instance for
for Test Script

3 DeployableCompType Entity
with comp-type = test-script

Create instance for
Validation Agent

Figure5. Test Case Generation and Provisioning Workflow

The sequence irFigure5 provides an overview on the provisioning workflow for Test Case Generatiorthe

first step, the Test Case Generator is populated using the Test Specification using templates and target SUT
configuration. In the second step, the domain expert provides the input for the DSL (Domain Specific
Language), in order to formalize the Requirements Model. This model is then sent to the Test Case Generator.

After this, the requirements model and the téspecification provide the basis for:

1 Mapping the test input data.

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html

2 hitps://www.eclipse.org/Xtext/

%’ Adeptness i 871319 19/51

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html
https://www.eclipse.org/Xtext/

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

1 Generate the target test scripts.

4.1.2 The generated scripts and location of input data is then packed Ddecker images, and
provided to theDocker registrypSl-based Oracle Generation & provisioning

A test oracle is the source that determines whether a System Under Test (SUT) behaves as expected. In the
Adeptness project, we have developed a Domain Specific Langai#dSL) for the specification of test oracles
specifically designed for CPSo0S. Besides, we have developed a test oracle generator that automatically
generates test oraclenicroservics by considering the specified test oracles with the DSL.

The workflow fo generating test oracles works as follows (See Figure 2). #ést engineer/validatorfirst
specifies the test oracles of the CPSoS under test by using Bl we have developed. Thdest oracle
generator generates the oracle code based on the specifiedSD. These are stored into test oracle DSL files.
In a second step, the validator commits and pushes these files to a git repository (in the prototype we have
developed we use aGitLab repository, although these could be generalizable to other reposit@)je After
committing and pushing these files, in three completely automated steps we are able to automatically
generate the test oracle microservice:

B First, the oracle code is generated in the C programming language. For each of the specified test
oraclesin the DSL, we generate individual .c and .h files.

B Second, these oracle files are obtained, cressmpiled and integrated with the Adeptness
microservice, which idockerized

B Third, the test oracle microservice is pushéathe Docker registryand an instance for a deployable
componententity is createdn Stellia

Automatic Generation of oracles and provisioning in Stellio Oracle Stellio
P! 9 DSL Oracle Code Microservice ADEPTNESS.
generatar Docker registry

geneator

Specify aracle [Pass Oracle specification |
Oracle code ! Push docker images !
for oracles

Validatar

Create instance for DeployableCompType Entity with comp-type= oracle

U

Figure6. DSEbased Oracle Generation Workflow

At planning phase, the registered test oracles can be then used for the Adeptness plan, and at runtime, the
registered oracles (ifDocker registry and Stellio logger) can be downloadeohd instantiatedon edge nodes

4.2 Plans definition

The provisioning workflow populates Stellio with the components and microservices that will be used during
the execution of Validations.

%’ Adeptness i 871319 20/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

The definition has four key steps (seEigure7):

1 ResourceProvisioning:Here other common components are defined as well. Mainly, deployable
components, nodes, the CPS and CPSoS, etc. The SUT is defined during the validatiodgdinition
step.

1 Deployment Plan: Provisioning of the deployment plan, including thiefinition of the agents
responsible of downloading and creating the resources in the target edge nodes.

1 Monitoring Plan: Provisioning of the monitoring agents and variablesdbservethe SUT.

1 Validation Plan: Provisioning of the agents, oracles andtezwal tools, including test inputs,
responsible for validating the SUT.

1 JSON Generation from TaaS Interfac&his step includes the aggregation of the deployment,
monitoring and validation plans to the Adeptness plan, and the generation of the files and
configurations required to run the plan.

Plans definition N

Test context provisioning

h 4

Deployment plan

h 4

Monitoring plan

h 4

{ Validation plan J

A 4
[JSON Generation from TaaS ’

Interface

Figure7. Planning Workflow
The following subsections provide details about the sequences in each of the planning steps.

4.2.1 Context provisioning

In our data driven approach, altomponents must be configured, registered, and sent to the Logger, our

context broker (Stellio) which handles context management, time and space, in an EndtRslationship
Properties graph model . For thisu@eaenmrp&seqgndthme M@ acSo mm!
with Stellio in a Restful way to handle the provisioning (see D5.1 for more in depth description of the
provisioning phase).

%’ Adeptness i 871319 21/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

4.2.1.1 CPSoS Specification

The features of the CPSoS that are going to be validated shall be provisiome8tellio. For each CPS, the
monitoring variables that can be observed are also provisamh These variables areamed Sensors. The
hardware nodes where CPSs and Adeptness deployable components are running shall also be provisioned.

For each deployable comonent type, the model contains the associated references to the compressed file
or container image (referencing/linlOor a URL), and the kind of component, such as a CAN monitor, oracle,
validation agent, SUT, external tool or test input.

In afirst step, the system engineers shall declare the target CPS0S, by defining:
B The CPSoS itself
B The CPS contained in the CPSo0S.
B The Sensors or Monitoring Variables of CPS. These can be grouped into Sensor Groups.

B The Nodes, this is, the logical entity providing thessociation between physic&UT and logical
entities.

In the following subsections, we provide the details on how the context broker in Adeptness is provisioned.
CPSoS

The first step is to define the logical context of validation. For that reason, th&tem engineer shall specify a
| ogi cal epnhtyistiyc adlc ysbyesrt e m of sy s t-physicdl systemis iindehvalglatanu ps al |

For the specification, the user connects to the freehd, TaaS inrAdeptness projectand provides a unique
desaiptive name, and a short description of the CPSo0S.

The Taas tool parses this information and creates a new CPSoS entity in Stellio context broker.

This sequence is depicted iRigure 8. In D5.18 Adapted version of Taa$® Section 3.1.1 explains the visual
interface in detail.

13 https://min.io/

%’ Adeptness i 871319 22 /51

https://min.io/

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

—_
Provisioning in Stellio of the CPSoS and hardware nodes. For each CPS
the variables that can be observed are also provisioning. These variables

are called Sensors.
TaasS Stellio
(Front-End) (Logger)

Specify CPSoS Create instance for
CPSoS Entity

Y

Y

System engineer

We need to identify CPSoS. For
example, Madrid installation in
Ciudad Comunicaciones

Figure8. Sequence diagram for provisioning CPSoS in Stellio
CPS

The system engineer shall declare the cybphysical systems (CPS), which are defined at the CPSo0S. For
specifying a new CPS, the user should first select to which CR8@8hesthe CPS be defined. After that, a
unique descriptive name for CPS and a shatéscription shall be provided, in order to identify the CPS and
map accordingly to the edge nodeSeeFigure9 for the representation of the sequence diagram associdte

TaaS Stellio
(Front-End) (Logger)

to the CPS specification.

'
-

Request registered
CPSoS

Y

Registered CPSoS

A

Specify CPS

Y

Create instance for

System engineer CPS Entity

Y

We need to identify the differen
CPS within the CPSoS. For
example, all the lifts that are part o
Madrid installation in Ciudad
Comunicaciones

Figure9. Sequence diagram for provisioning CPS in Stellio
Sensors

A sensorin Adeptnessrepresents a monitoring variableof a given device. In our case, this is specifically a
monitoring variable on the CPS. A generic sensor shall contain, at least the unit, the sampling rate and a
communication protocol, which will be used at runtime to transfer collected data to the Adepgesosystem.

%’ Adeptness i 871319 23/51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

The user shall first select the CPS to which the sensor is attached. Every sensor is allocated to a single CPS.
specify a new sensor, selecting the CPS to which will be attached. Additionally, the user should provide a
unique sensor descriptey name, a unit, a sampling rate, and a protocol. Depending on the selected protocol,

the user shall specify protocespecific attributes, such as data location. Finally, the sensor shall be associated

to one of the defined monitoring agents, which is theay of notifying to Stellio at runtime the sensed data in

the SUT.

The Figure10displays graphically the sequence described above.

TaaS Stellio
(Front-End) (Logger)

-

Request registered
CPS

\ 4

Registered CPS

Specify CPS Sensors

Y

Create instance for
Monitoring Variables
(Sensors) Entity

System engineer

>
For the configuration of monitorAgents
and oracles the available variables
must be known.

Figure1Q Sequence diagram for provisioning Sensors in Stellio

The sensors can be grouped intro Sensor Groups. This allows sharing common technical characteristics to all
contained sensors such as publishing rate. The groups shall be defined after at leastleading Sensor is
defined.

Hardware Nodes

The logical entity Nodes can be directly specified to Stellio through TaaS fremd. TheFigure 11provides
the sequence fo creating the hardware nodes.

%’ Adeptness i 871319 24 /51

ADEPTNESS 871319 PU
D5.3 7~ Workflow and toolchain documentation

Figure11 Sequence diagram for provisioning Nodes in Stellio

4.2.1.2 Deployable Components Specification

The next logical step is the specification of deployable components in Stellio through T&a&S provides an
interface to declare in the Logger the following deployable component types:

B System Under Test (SUT).
B Oracles

B Monitor Agents.

B External Tools.

B Test Inputs

B Validation Agents

This specification allowse specifcationand comection at deployment, monitoring and validation plans.

The System Under TestSUT) represents the target validation entity. For our use case, SUT is a deployable
component, which is the validation subject of the validation plan. This can be some softwaraponent
attached to the physical system, such as a library, an algorithm, or any element likely to be validated.

The Oraclesrepresent an entity, wioh evaluate some conditions at validation time and trigger evaluation
verdicts, representing whether the conditions at testing are met. The validation agmilects, at validation
completion, the associated oracles verdicts. The implementation and logic underlying to Oracles is
automatically generated using DSL2Oracle microservice (see Se@&i8rp, and provisioned to Stellio using
the TaaS frontend specification available in Sectighl.2

The Monitor Agents are configured to read the proper SUT variables during the execution of the validation
plan. These are specified at provisioning time in Stellitne External Toolsllow to integrate domainspecific

%’ Adeptness i 871319 25/51

