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1 PURPOSE OF THE DOCUMENT 

The purpose of this document is to assess the impact of Adeptness methods in the case study in the railway 

domain. The overall objective is to compare the quality and the cost of a new software release.  

1.1 Document structure 

Section 2 presents an introduction to the deliverable. Section 3 consists of an overview of the use case and 

the current process at Bombardier Transportation. The detailed description of the use case is in Section 4, 

which also contains the methodology of relevant Adeptness solutions. The results of the investigations are in 

Section 5, which also contains a discussion of results as well as the limitations. Conclusions are presented in 

Section 6, while future work is in Section 7. 

1.2 Deviations from the original Description in the Grant Agreement Annex 1 Part A 

1.2.1 Description of work related to deliverable in GA Annex 1 – Part A 

There are no deviations with respect to work of this deliverable. 

1.2.2 Time deviations from original planning in GA Annex 1 – Part A 

There are no deviations with respect to work of this deliverable. 

1.2.3 Context deviations from the original plan in GA Annex 1 – Part A 

There are no deviations from the Annex 1. 
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2 INTRODUCTION 

Software controls safety-critical functions of systems in different domains, e.g., in avionics and vehicular. 

However, the failure of software in such systems directly affects the physical world. Therefore, failures in safety-

critical software can lead to substantial risk to the safety of human lives, serious environmental damage, and 

severe economic problems. Engineering safety-critical systems typically require a certain degree of 

certification according to safety standards and defined processes for thoroughly analysing the system 

requirements, together with software testing to ensure its reliability.  

The analysis of the preliminary system requirements is performed by one of the qualitative or quantitative 

safety analysis techniques such as expert analysis, failure mode and effect analysis, reliability block diagrams, 

and fault tree analysis [1]. After analysing system requirements, safety-critical functions are usually 

implemented in specific industrial control software systems. For example, Programmable Logic Controllers 

(PLCs) support multiple programming languages for the development of industrial applications and have 

been widely adopted in several domains. The testing of such software is then carried out to ensure adequate 

functional and non-functional operations of the system according to specific system requirements. However, 

testing such systems is costly. As a solution to reducing the cost of testing and assuring the reliability of such 

systems, several techniques for automated test generation such as model-based testing (MBT), and 

combinatorial testing (CT) exist.  

Despite the promise of MBT, the industrial adoption of it is slow and there is a need for more industrial case 

studies that evaluate the strengths and weaknesses of MBT. Moreover, since manual test generation is still 

widely used in industrial practice, more systematic studies on how manual test design compares with MBT 

and how it can be adopted in the industrial safety-critical domain are needed. Given that for safety-critical 

systems, rigours testing needs to be performed according to certain standards, it is important to bring more 

evidence on how MBT tools compare with, what is perceived as rigorous manual test design performed by 

industrial practitioners.  

MBT generates abstract test cases based on a model of the System Under Test (SUT). The abstract test cases 

can be transformed into concrete, executable test scripts that can eventually produce test verdicts. However, 

we have observed that this concretization step is not covered well enough in the literature or is discussed only 

in the context of web- based and mobile applications where somewhat mature script generation frameworks 

exist such as Selenium and Appium. Thus, only few papers report on the details of the concretization step 

and even fewer have addressed it for embedded software testing at integration and system levels. 

Besides, manual testing is still considered a prevailing technique for the testing of real-world industrial 

applications [2], with some evidence suggesting that both technical and non-technical skills are required for 

effective fault detection [3]. There is a scarcity of research and consequently empirical evidence into the fault 

detection effectiveness of automated test generation techniques and industrial manual testing, especially if 

the aim is to generate test cases at the system level of a safety-critical system. Thus, the use of automated 
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test generation alongside industrial manual testing requires a thorough evaluation of the fault detection 

capabilities in an industrial setting.  

This report summarizes the impact of methods developed in Adeptness in the railway use case. In summary, 

this report focusses on the following contributions: 

• Modelling of the fire indication system of the train control management system (TCMS) in 

GraphWalker (GW) using two sources (requirement specifications and test specifications).  

• Evaluation of the generated models for completeness and representativeness.  

• Comparison with manual test cases from practitioners.  

• Documentation of our experiences of selecting and on-going use of GW for both industrial 

application and research purposes.  

• Development of a Model-Based Test script Generation framework (TIGER) based on GW. 

• Evaluation of the behaviour of TIGER-generated test scripts by injecting faults in the model of a fire 

detection system controlled by the TCMS. 

• Investigation of MC/DC adequacy of two automated testing techniques (CT and MBT) and industrial 

manual testing at system-level, along with measuring requirement coverage and performance 

efficiency in terms of time. 

• Investigation of the fault detection effectiveness of manual and two well-known automated test 

generation techniques (i.e., CT and MBT) through mutation analysis, at the system level of the safety-

critical train control management system (TCMS). 

• Experiences from introducing passive testing at the system level showing how this technique can be 

adopted and deployed in the safety-critical domain. 
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3 OVERVIEW OF THE USECASE AND CURRENT PROCESS 

3.1 Company and Context 

In early 2021, Bombardier Transportation was acquired by Alstom. However, for the purpose of consistency in 

Adeptness deliverables, we will keep referring to its use case as Bombardier Transportation’s (BT’s) use case.  

Bombardier Transportation (BT) has an extensive portfolio of railway transportation solutions for diverse 

customers all over the world. This portfolio includes high-speed trains, metros, monorails, trams, to turnkey 

systems, services, infrastructure, signalling and digital mobility (https://www.alstom.com/company). BT’s 

ambition is to contribute more and more to green and smart mobility solutions, leading societies to a low 

carbon future, and providing sustainable foundations for the future of transportation 

(https://www.alstom.com/company). In 2021/2022, the total number of BT employees exceeds 74000, with 

250 sites across 70 countries, with 150000 vehicles in commercial service worldwide. 

3.2 Product 

BT’s Train Control and Management System (TCMS) runs the central processor units that provide connections 

to all the electronic equipment, traditional train wiring and activators. TCMS implements several of the 

required train functions, including train command and control, train safety, maintenance, passenger 

information systems, passenger comfort system, video surveillance, and train to wayside data transfer. The 

TCMS team that is part of the Adeptness project, programs the applicative software of the central processor 

units to make sure that the requested behaviour of the related train function is achieved. This software, after 

validation, is installed into the train central processor units. Thus, TCMS provides functional support mainly 

with the help of software.  

TCMS is an integral subsystem embedded in a complex railway vehicle architecture together with other 

subsystems and conventional train control. TCMS is connected to any other subsystem which requires support 

by software functions, such as power converters, braking system, train radio and others, as shown in Figure 1 

below.  

 

Figure 1. TCMS is connected to any other subsystem that requires support by software functions. 
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Figure 1. TCMS is connected to any other subsystem that requires support by software functions. 

The validation and verification engineers at TCMS ensure that the Applicative Software corresponds to the 

required behaviour. This must be confirmed in nominal and degraded scenarios. The validation activities 

include requirement management/ test management, configuration and change management of the software 

releases, software specification verification, tests specification and scripting, software review/code review, 

supporting software integration on trains, processes and tools optimizations, and release note restriction.  

The application SW of the TCMS System is largely developed using a design centric integrated development 

environment which is based on the function block language according to norm IEC 1131. Using this language 
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The validation and verification engineers at TCMS ensure that the Applicative Software corresponds to the 

required behaviour. This must be confirmed in nominal and degraded scenarios. The validation activities 

include requirement management/test management, configuration and change management of the software 

releases, software specification verification, tests specification and scripting, software review/code review, 

supporting software integration on trains, processes and tools optimizations, and release note restriction.  

The application SW of the TCMS System is largely developed using a design centric integrated development 

environment which is based on the function block language according to norm IEC 1131. Using this language 

minimises the risk for program faults because it does not allow dangerous language constructs (e.g., null 

pointer assignment).  

TCMS is an integral part of the vehicle architecture. As mentioned before, the TCMS system together with the 

conventional train control and other systems (e.g., brake, traction chain, car body, boogies etc.) contributes 

to the realisation of the overall functions on vehicle or train levels. The vehicle breakdown to system level is 

shown in Figure 2 where the range of scope of the work in Adeptness is also highlighted.  

 

Figure 2. Breakdown of the complete system covering various levels. 

3.3 Process 

There is a defined process of testing and validation of TCMS. There is a test level hierarchy as well as scope 

of testing defined, TCMS acts as a system under test, where the different intelligent units are connected to 

each other and the other intelligent units on the train via different communication links such as MVB- and IP 

networks. This is shown in Figure 3.  
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Figure 3. The system under test (TCMS) has defined interfaces between TCMS and other units of the train. 

The testing and validation of the TCMS follow certain guiding principles: (1) Stable TCMS software application 

before delivery to commissioning (there should not be any serious stopping faults on the train) (2) Minimal 

commissioning time on the train (reduction from months to weeks) and (3) Efficient update and retest 

procedure (reduction from weeks to hours). Moreover, the testing strategy should fulfil the demand of the 

safety-integrity in compliance with the norm (EN50128/EN50657).  

The testing strategy at the company is defined by the following: 

§ Level for formal testing including the demand on test coverage 

§ Test Coverage & Traceability 

§ Selection criteria for specific test environments for the TCMS System Test 

§ Specific test techniques 

§ Comparison between different test level 

§ Passed / failed criteria, suspension criteria and resumption requirement 

§ Incremental test for changes 

§ Usage of a laboratory for the test 

In addition, it relies on the following complementary measures: 

§ Continuous integration & test 

§ Developer tests 

The test strategy utilises the incremental development model for the continuous integration & test. The 

following subsections will briefly discuss each of these elements of the testing strategy. 

3.3.1 Test level hierarchy at the company 

As was shown in Figure 2, there are different levels of test and validation, moving from the sub-system to 

vehicle to train to eventually to the complete railway system.  The first two levels, along with their 

corresponding testing activities are shown in more detail in Figure 4 below. At the basic level, there is software 

level testing where component testing and TCMS function testing is done. At the system level, TCMS sw/hw 
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integration testing, TCMS system and validation testing takes place. At the vehicle level, there is vehicular 

functional testing that is performed. For Adeptness, the scope of testing remains at the software and the 

system level with TCMS as the system under test. 

 

Figure 4. Test level hierarchy at the use case company. 

The test level, their content and their correspondence to the test level demanded by the norms EN 50657 / 

EN 50128 are shown in Table 1.  

Table 1. TCMS test levels and types of testing at the software and the system test levels. 

Test level Corresponding test level of EN 50657/50128 

Name BI SIL 0 SIL 1/2 Name BI SIL 

0 

SIL 

1/2 

M – Mandatory 

C – Conditional Mandatory 

R – Recommended 

HR – Highly Recommended 

TCMS SW Test 

(at SW application level) 

C 1) C 1) M SW Component Test R R HR 

SW Integration Test R HR HR 

TCMS System Integration 

Test 

M M M SW/HW Integration Test R HR HR 
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TCMS System Test M M M Overall Software Test HR HR HR 

1) The TCMS SW Test (at SW application level) shall apply for those parts of BI (Basic Integrity) and SIL0 

applications which are known to be error-prone, complex or were an error may have an impact on the 

availability of the vehicle or where the integration of SW components shows critical parts. SIL stands for 

Safety Integrity Level. 

 

The SW Test at the SW application level is based on the TCMS SW Requirement Specification and the TCMS 

SW Architecture & Design Specification and is documented in the SW Test Specification. 

The main target of the TCMS SW Test at SW application level is to ensure the correctness of 

§ integration of the SW components into the SW application 

§ SW application regarding the SW Requirement Specification 

The TCMS System Integration Test is based on the TCMS System Architecture Specification and is 

documented in the TCMS Integration Test Specification. It corresponds to the HW/SW Integration Test as 

demanded by the norm EN 50128 and EN 50657. It also covers a regression test to check the correct 

behaviours of the TCMS system after changes. 

The TCMS System Test is based on the TCMS System Requirement Specification including the Interface Signal 

List which defines the logical interface signals and the TCMS Interface Control Documents which define the 

physical interfaces. The design of the TCMS System Test is documented in the TCMS System Test Specification 

whereas the implementation is done via test scripts. The main target of TCMS system testing is to ensure the 

compliance of the TCMS System with the TCMS System Requirement Specification and its intention. 

3.3.2 TCMS Test Coverage and Traceability 

The establishment and maintenance of test-related traceability is an essential part of test analysis, test design 

and test execution process that is performed continuously according to the project progress. It demonstrates 

the coverage of all implemented requirements in terms of the validating test cases as well as the test execution 

results and contains justifications if test-related coverage is intentionally not given. Clearly, it does not show 

whether the content of the validating test cases fully "proves" the requirement, but this is done by checking 

the contents of the test cases during test case review. The test-related requirement coverage is formally 

documented by the Test Traceability Matrix. The requested test coverage is shown in Table 2 under 

consideration of the selection of the test environments for the system test. 

Table 2: TCMS Requirement Test Coverage. 

Test Level Integrity 

Level 

Test coverage 

TSMS System Test all 100% of all testable1) requirements in all selected test 

environments 
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TCMS Integration Test all 100% of all testable1) requirements 

TCMS SW Test 

(at SW application level) 

BI, SIL0 selected testable1) requirements (see below table) 

SIL1/2 100% of all testable21) requirements 

1) Testable requirement: requirement which can be validated by test 

 

3.3.3 TCMS Test Techniques & Methods 

During the test of the TCMS, the certain specific techniques and methods shall apply for the different test 

levels. At the software application level, functional black-bpx testing with boundary value analysis, equivalence 

classes and input partition testing is used. At the integration test and system test levels, functional black-box 

testing is complemented with performance testing of responses and memory constraints. 

3.3.4  TCMS Test Passed/Failed Criteria 

The passed/failed decision shall be done at test step level by comparing the expected test result with the 

actual test result. It shall be recorded in the corresponding test record. Each test case execution shall provide 

a summarization of the results of the test steps where the summarised result is passed only if all test steps in 

scope have the result passed. Pass/fail criteria are defined in each test case description in the column expected 

results corresponding to each test activity. The overall result of a test at a given level is determined by the 

evaluation of the results of the individual test and may be passed, conditional passed or failed. Conditional 

passed means the found malfunctions are evaluated as sufficiently safe (SIL1/2) and not operation critical for 

the intended use of the test object. In this case, the SW application or the TCMS System may be released but 

the malfunctions must be stated as known errors and application conditions must be promoted to the next 

level to show the impact of the malfunction. For that purpose, the change management process shall be 

utilized. If the overall test result is failed, the test must be interrupted, and the error corrected. 

3.3.5 Test Suspension & Resumption 

There are reasons to suspend a test. 

§ The test environment shows a malfunction, or a misconfiguration of the test environment has been 

detected 

§ The SW application or the TCMS System shows a critical malfunction  

§ Further test activities of the TCMS SW application or TCMS System has been administratively 

stopped for the release under test 

In any case, the test records shall be archived to be able to resume the test activities. To resume the test 

activities in case of a critical malfunction of the TCMS System, an impact analysis must be performed which 

shall, depending on the test level, follow the intention of the incremental verification, test, and validation 

activities. 
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3.3.6 Comparison between different test levels 

To improve the error detection probability, the test result of a failed test execution shall be evaluated 

regarding the ability to uncover them in a lower test level. If feasible and efficient, the test cases and/or the 

test environment shall be adapted accordingly. 

3.3.7 Incremental test for changes 

According to the validation strategy, it is possible to rely on test results which were obtained from predecessor 

releases if the Change Impact Analysis allows this. In this case, testing shall be done at least to the following 

extent: 

TCMS System Test 

§ execute all system test cases which validates requirements identified by the Change Impact Analysis 

as affected, implemented, or tracked by work items demanding a new or changed functions or 

solving defects 

TCMS Integration Test 

§ execute all integration test cases which validates requirements identified by the Change Impact 

Analysis as affected, implemented, or tracked by work items demanding a new or changed 

functions or solving defects 

§ execute the Integration Regression Test part of the TCMS Integration Test 

TCMS SW Test 

§ execute all SW test case of all safety relevant SW applications which are identified by the Change 

Impact Analysis as affected 

§ execute all test cases of all SW applications which are identified by the Change Impact Analysis, 

and which are identified to be validated according to the test coverage. 

3.3.8 Usage of laboratory 

The test of the TCMS System shall rely entirely on the test in the laboratory where the test rack hosts the 

original TCMS devices for the formal test of the TCMS System including bus systems. 

The test rack also provides the environment for the test execution (stimulation, observation of signals) and 

the Environment Model which simulates the environment of the TCMS System at the vehicle to the extent 

necessary by the test. 

The test of the SW Application is preferably performed at the Virtual CCU which provides an emulated 

environment which runs at a PC, and which is compliant to the HW and firmware of the corresponding CCU 

type. Building of a Virtual CCU is done by utilising the original SW of the SW application without any 

modification. 

If it is not possible to use a virtual CCU due to a strong dependency with the real firmware or HW, the test 

shall be done using the real TCMS device. 

Table 3 shows the test setups used for the different test levels. 
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Table 3: Test Setup used for formal tests. 

Test Level Test Specifics Test Equipment 

TCMS System Test   Test Rack 

TCMS Integration Test   Test Rack 

TCMS SW Test SW application at CCU Virtual CCU 

  HW related functions Real TCMS device 

  SW application at HMI Real HMI 

  

The compliance of the behaviour of the test rack with the behaviour of the train is demonstrated by the 

laboratory qualification. The qualification relies mainly on the correct implementation of the environment 

model according to the specifications of the other systems with an optionally comparison of selected test 

results obtained at the test rack and obtained at the vehicle. 

Table 4 shows the test environments used for developer test. 

Table 4: Test Environment used for developer test. 

Test Level Test Specifics Test Equipment 

TCMS System Test Usage of HMI Test Rack 

  Virtual Train 

TCMS Integration Test   Test Rack 

Integration Regression Test 

(functional test) 

Virtual Train 

TCMS SW Test   Virtual CCU 



ADEPTNESS – 871319  PU 
D7.2 – Report on the Results of the Cost-Benefit Assessment 
 

 Adeptness – 871319   20 

   

HW related functions Real TCMS device 

SW application at HMI Real HMI 

 

In the context of Adeptness, one can map the whole process of testing at the software application level to 

Software or Model in the loop (MIL/SIL) level while testing on the test rack is synonymous with testing at 

Hardware in the loop (HIL) level. This is shown, together with Adeptness specific scientific and technical 

objectives (STOs) in Figures 5 & 6 below. 

 

Figure 5. TCMS development at MIL/SIL level and mapping with Adeptness STOs. 
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Figure 6. TCMS development at HIL level and mapping with Adeptness STOs. 

3.3.9 Continuous Build & Test 

The continuous build & test is a complementary informal measure to demonstrate continuously the 

correctness of the TCMS System to a certain extent already during the development phase. 

The continuous build & test is based on an automated build system that takes advantage of the incremental 

development of the TCMS system. Continuous build & test is done at the level of the TCMS System and 

utilises the Virtual Train as the test environment. It assumes that a Virtual Train can be built successfully from 

the current snapshot of the source code and the configuration data of the TCMS system together with the 

Environment Model. 

The continuous build & test starts as soon as a minimum part of the TCMS System has been implemented 

which allows the start-up of the TCMS devices. The test executed during the continuous build & test is at the 

minimum the TCMS Integration Regression Test. Due to the incremental development, the test provides first 

a reduced set of test steps which is extended according to the progress of the development of the TCMS 

System. 

The continuous build & test allows fast feedback for the SW developers about the quality of their contribution 

to the overall TCMS SW or its configuration. Therefore, it is done at least every night. 

In addition, the build can be performed by any developer to individually check the impact of their contribution 

to the overall system behaviour. 

The continuous build & test also allows an early development of test scripts because it provides an 

environment where the test scripts can run without additional measures (test of the test). 

3.3.10 Developer Test 

The developer test is a complementary informal measure used by every developer to ensure the correctness 

of a contribution to the overall TCMS SW and its configuration before delivery. It utilises the automated build 

system and the test environment already in place for the TCMS SW Test and the TCMS System Test at the 

Virtual CCU or the virtual train. That is, a developer may trigger an individual build of the Virtual CCU or 
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Virtual Train to check the impact of their contribution to the behaviour of a SW application or the overall 

system behaviour. 

3.4 Environment/Infrastructure/Tools 

3.4.1 Test Setup 

The test of the TCMS System uses test setups utilising the following test equipment: 

·    Virtual CCU 

·    Virtual Train 

·    Test rack 

Figure 7 shows the test setup utilising the Virtual CCU and the test executors for automated or manual test 

execution. 

The Virtual CCU is a tool which runs at a test PC, bases on the Soft-TCMS technology and exposes a virtualized 

environment for the SW applications at an CCU. It provides the same functional environment as the real CCU 

(process scheduling, OS calls, communication means) including the capability for signal stimulation, 

observation and debugging. The Virtual CCU can be built directly from the TCMS project files. 

 

Figure 7. Test setup with virtual CCU. 

 

Figure 8 shows the test setup utilising the test rack, the Virtual Train, and the test executors for automated or 

manual test execution in a single-unit operation environment. 

The test rack is a setup which hosts the TCMS System of one vehicle comprising the real TCMS devices. In 

addition, the test rack hosts the test execution environment and supporting tools (e.g., remote controllable 

switch to power TCMS devices, coupling controller). Like the Virtual CCU, the Virtual Train is a tool which runs 

at a test PC, bases on the Soft-TCMS technology and exposes a virtualized environment for the SW 

applications at an CCU as well as the configuration of the additional TCMS devices (switches, gateways) 

including the TCMS bus systems and the test execution environment. The Virtual Train can be built directly 

from the TCMS project files and the configuration of the test execution environment as used for the test rack. 
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Figure 8. Test setup utilising test rack and Virtual Train. 

Figure 9 shows the setup used for the test at the system level if the interworking between different TCMS 

Systems at different vehicles needs to be checked. The setup is chosen because a complete simulation of a 

vehicle at the inter TCMS System interface is not in place. In case of a test rack, the test is done by utilising 

multiple test racks where each test rack represents one vehicle. In case of the Virtual Train, the Virtual Train 

itself provides the virtualization of multiple vehicles. 

 

Figure 9. Test setup utilising test rack and Virtual Train for multiple-unit operation. 

3.4.2 Test Executor 

The test executor is a tool which triggers the execution of test steps, gathers the results, and provides the test 

records (test logs) which includes gathering of metadata also. 

3.4.3 CSharp Bench 

The CSharp-Bench allows to implement test scripts and execute them automatically or semi-automatically. 

The latter option allows manual intervention during automated test execution. The CSharp Bench can trigger 

the RTSIM to observe or stimulate signals at TCMS according to the need of the test script which includes the 
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observation and manipulation of visual elements (capture screenshots and press soft buttons). The CSharp-

Bench can be used for all levels of testing. The observation and stimulation of visual elements is a new method. 

The productive usage requires the qualification of the tool chain including proof of robustness. Introduction 

into existing projects requires upgrade of existing test script frameworks. 

3.4.4 Manual Test Framework 

The manual test framework supports the manual test by providing means to design a graphical user interface 

which allows to stimulate and observe signals similar as it is possible with the CSharp-Bench. It may be used 

to provide a graphical simulation of the cab. 

3.4.5 Test Execution Framework – RTSIM 

The test execution environment is a tool called RTSIM which interfaces between the test executor and the 

TCMS System for stimulation and observation of the TCMS System. In addition, it provides a runtime 

environment for the Environment Model which simulates the vehicle environment of the TCMS System. The 

RTSIM is a component which simulates in conjunction with the Environment Model the environment of the 

TCMS system and which can stimulate the input and monitor the output of the TCMS system on request of 

the CSharp Bench. For that purpose, the RTSIM interfaces with the TCMS System via the TCMS bus systems 

and the test PC hosting the CSharp Bench via IP. 

The RTSIM comes in two flavours, as HW component which allows a real time operation at a test rack or as 

SW component which is part of the Virtual Train. 

The current RTSIM device is shown in Figure 10.  

  

Figure 10. RTSIM hardware device. 

3.4.6 Environment Model 

The Environment Model runs on the RTSIM and is used to simulate the real environment of the TCMS system 

to the extent necessary by the TCMS system test but does not provide the simulation of all aspects of the 

subsystem. For that purpose, the Environment Model can automatically set a large portion of the TCMS input 

signal vector without any support of the test scripts. The test script needs to set only the signals relevant to 

the test case. The Environment Model can also be stimulated by the test script itself and can execute complex 

signal flows, which individual subsystems or a group of sub-systems would generate upon external 
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stimulation. The same also works in the opposite direction. Complex reactions of the TCMS system can be 

verified by the Environment Model. 

The conventional train circuits part of the environmental model is completely provided by direct generation 

from the technical documentation. This may provide more functions than required for the test, but with a 

higher reliability than would be possible manually. Thus, uncovering malfunctions in the conventional train 

circuits is possible even if it is not directly part of the TCMS test. 

The Environment Model is defined by Simulation Specification which relies on the Interface Control 

Documents and Functional Vehicle Design Specifications of the subsystems and the schematics of the 

conventional train circuits. 

The Soft TCMS Environment is a tool chain for software-in-the-loop tests. This environment makes it possible 

to execute and test CCU and CCUS code on a normal Windows PC. By that it is possible to equip every 

software developer or tester with his own Virtual Train and consequently making the testing much more 

efficient. 

3.4.7 Virtual Train 

The Virtual Train Configuration Wizard is a tool with a graphical user interface designed to help users set up 

a valid runtime environment for Virtual Trains. It interfaces with the various executables and configuration files 

and options involved.    

3.4.8 TCMS Test Rack 

Not all requirements can be easily tested in simulation environments. Complex interfaces and performance 

requirements mean that they can only be completely tested in the real environment, see Figure 11. It must 

also be proven that the simulation environment corresponds to the real behaviour of the TCMS devices and 

the TCMS system.  

 

Figure 11. TCMS Test Racks. 
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4 DESCRIPTION OF THE USE-CASE AND METHODOLOGY OF SOLUTIONS 

As was mentioned before, Bombardier’s system under test is the TCMS. TCMS is the centre of the distributed 

system that controls the flow of information both on the train between the different subsystems (like heating 

and ventilation) and between the train and the ground. A general architecture of the TCMS is shown in Figure 

12 below. 

 

Figure 12. A general architecture of the system under test, TCMS, from Bombardier’s use case. 

For developing Adeptness solutions with Bombardier’s use case, an ongoing delivery project was selected. It 

is called the R151 Movia Metro Train project. Movia is a family of metro trains. Movia metros are operational 

in several countries, including Canada, China, India, and Sweden. An example Movia metro in Sweden is called 

C30 and is shown in Figure 13.   

 

Figure 13. C30 Movia train arriving at a station in Sweden. 

R151 is the upcoming 7th generation electric-driven rolling stock that will be introduced in Singapore’s mass 

rapid transit system. These metro trains are expected to enter service from 2023. 
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When it comes to the optimization of the lifecycle of the development, testing and operation of TCMS, it is 

convenient to think in terms of the model that is in place at the company. This is shown in Figure 14 below.  

 

Figure 14: The V-model of design and operation of the TCMS. 

 

This figure separates the operation phase from the design phase. The design phase includes the software 

requirements specification and review, software design and review, implementation and review and the 

different cycles of the test and validation in different simulation platforms: MIL, SIL and HIL. On the left side 

of the figure is the operation phase, that includes validation on the train and fleet side.  

This use case is set up to primarily focus on the improvement on the validation front but other Adeptness 

microservices, such as deployment, will also be evaluated. 

4.1 Involved Adeptness Solutions for KPI measurement 

The Adeptness technical solutions that have been evaluated for KPI measurement on the railway use case are 

as following: 

• Model-based test generation and execution on Software-in-the-Loop (SiL) and Hardware-in-the-

Loop (HiL) execution platforms. 

• Continuous monitoring using T-EARS. 
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4.2 Use case Selection 

To investigate the impact of adeptness solutions, we conducted a series of industrial case studies. We 

modelled the fire indication sub-system of an on-going TCMS project at BT. Throughout our investigations, 

we also consulted with the test team at BT to understand their test generation process and analyzed their test 

artefacts to compare them with artefacts generated using MBT.  

4.2.1 Case Selection 

In discussions with BT, we selected an on-going TCMS development project for the MOVIA vehicle product 

family as a ‘case’. The MOVIA is BT’s family of metro train cars, and they are currently operational in various 

metro rail networks across the globe. The ‘unit of analysis’ translates to the SUT for the selected software 

development project, which is the TCMS. The following sub-section provides further details on the SUT.  

4.2.2 SUT 

The SUT is a TCMS that is currently being developed with a testing process highly influenced by safety 

standards and regulations. TCMS is a high capacity, infrastructure backbone built upon an open standard IP-

technology that allows easy integration of all control and communication functions on-board the train. It is 

considered as the centre of the distributed system that controls the flow of information both on the train 

between the different subsystems like converters, doors, heating, ventilation, and air-conditioning and 

between the train and the ground. TCMS is designed to perform all tasks related to modern vehicle control.  

As shown in Figure 15, the TCMS consists of multiple TCMS devices of specific types, which are connected 

internally via the system Multi-function Vehicle Bus (MVB) and Ethernet Consist Network (ECN). Both bus 

systems are also used to interconnect other systems at the vehicle. The Modular Input/Output (MIO) devices 

are used to interconnect with the conventional train lines of the vehicle whereas Modular Input/Output Unit 

– Safe (MIO-S) deals with safety critical Input/Output analogue signals. The connection between the TCMS 

instances of different vehicles is established via the bus systems Wired Train Bus (WTB) and Ethernet Train Bus 

(ETB). The Centralized Traffic Control (CTC) is used to consolidate the train routing decisions. A TCMS device 

of a certain type may appear multiple times depending on the required scalability or redundancy demands 

for a certain product. TCMS uses Central Control Units (CCU) to control multiple train functions; CCUO 

controls the basic functions, CCUS executes the safety critical functions and CCUD is a logical component that 

manages the diagnostic history database. The HMIs (Human Machine Interfaces) are also foreseen for each 

driver’s desk.  
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Figure 15. Illustration of TCMS architecture. 

4.2.3 Industrial Scenario for Modelling and Test Generation 

In our case studies, the selected requirements of the SUT were related to the multi-purpose TCMS devices to 

detect fire in the cab (the driver’s compartment). Figure 16 represents an architecture of the fire detection 

system used by TCMS. The fire detection system of TCMS uses two instances of Fire Detection Control Units 

(FDCUs) to detect fire based on their current states i.e., Master or Slave. A FDCU is considered as ‘Master’ if 

two of its signals hold the value as true. Both FDCUs communicate with smoke and fire sensors to receive 

signals indicating two types of fire i.e., internal, and external. The TCMS MIOS device receives these signals 

from both FDCUs and communicates with CCUS via the MVB network. The CCUS computes the logic based 

on system requirements and responds with an output signal. The MIOS receives the corresponding output 

signal from the CCUS and indicates the type of fire on the driver’s desk.  

On the real train, the FDCU devices communicate with fire and smoke sensors. When a sensor detects 

smoke/fire, FD- CUs send signals informing TCMS MIO-S device. The MIO-S device communicates using MVB 

network with the CCUS device. CCUS computes some logic (based on the system requirements) and provides 

an output signal. This signal is transmitted to the MIO-S device to light a LED as indication of fire/smoke on 

the driver’s desk, via electrical wiring. 

 

Figure 16. Architecture illustration of the fire detection subsystem of TCMS. 

 

ISEC 2021, February 25–27, 2021, Bhubaneswar, Odisha, India Zafar et al.

Figure 1. Illustration of TCMSarchitecture.

product. TCMSuses Central Control Units (CCU) to control

multiple train functions; CCUO controls the basic functions,

CCUSexecutes the safety critical functions and CCUD is

a logical component that manages the diagnostic history

database. The HMIs (Human Machine Interfaces) are also

foreseen for each driver’s desk.

3.2.2 Industr ial scenario for model ing and test gen-

eration. In this case study, the selected requirements of the

SUT were related to the multi-purpose TCMS devices to

detect re in the cab (the driver’s compartment). The re

detection system in TCMSis used to detect two typesof re:

external reand internal re. It uses two instances of a de-

vice known as the Fire Detection Control Unit (FDCU-1 and

FDCU-2) to signal the TCMSabout the status of both types

of re. Both devices can have two states: slave and master

in order to detect re. The TCMSindicates the external or

internal rebased on the signals sent by the devices and the

current state of these devices.

On thereal train, theFDCUdevicescommunicatewith re

and smoke sensors. When a sensor detects smoke/ re, FD-

CUssend signals informing TCMSMIO-Sdevice. TheMIO-S

device communicates using MVB network with the CCUS

device. CCUS computes some logic (based on the system

requirements) and provides an output signal. This signal is

transmitted to the MIO-Sdevice to lit a LED as indication of

re/smoke on the driver’s desk, via electrical wiring.

3.3 Data Col lection Procedures

The data collection for the case study and inputs required

for modelling was performed using two di erent data col-

lection techniques [14]: direct contact with the testing team

at BT and independent analysis of the artefacts produced by

practitioners.

Through consultations with the testing team at BT, the

SUT to be modelled was selected from an on-going devel-

opment project, for which the practitioners developed test

cases manually and provided access to relevant artefacts

(such as requirements speci cation and test speci cation)

related to theSUT. Onemember from academiaspent numer-

ous hours to understand BT’s test process, SUT and the test

cases written by industrial professionals. Healso underwent

trainings by an experienced test lead at BT to get acquainted

with the test proceduresand the software-in-the-loop test-

ing process at BT. The academic team coordinated e orts

to bring clarity in understanding the SUT and the testing

process at BT. This involved numerous email exchanges and

meetings between the industrial and academic parties as

well as thorough scrutiny of the test related artefacts by the

academic team. The manual test data was collected by using

a post-mortem analysis of the available artifacts.

The engineering processes of software development at

BT are performed according to safety standards and regu-

lations (e.g., EN 50128 standard is used for designing test

cases). Each test caseshould contribute to thedemonstration

that a speci ed requirement has indeed been covered and

satis ed. Executing test cases on TCMSis supported by a

test framework that includes the comparison between the

expected results with the actual outcome. In the following

subsections we present the artefacts available for modelling

the speci c industrial scenario of the SUT in GW.

3.3.1 Requirements Speci cation. The requirements

for the speci c industrial scenario (Section 3.2.2) contained

all the details about under what circumstances the TCMS

should indicate external and internal res in the cabs. These

requirements have been speci ed in natural language,

but follows a pattern of ‘Given-Then-Within’ scenario

description, similar to the ‘Given-When-Then’ template as

common in Behavior Driven Development3. The ‘Given’

clause speci ed the actions, ‘Then’ clause speci ed the

observable outcome and ‘Within’ clause speci ed the timing

constraints of each requirement. The ‘Given’ and ‘Then’

clauses for a requirement occasionally included multiple

boolean operators (AND/OR) to join conditions together.

The requirements thus followed the following template:

GI VEN{Statement 1} AND/OR{Statement 2}

THENTCMSshall {Statement 3}

WI THI N{t Seconds}

3.3.2 Test Speci cation. Themain component in thetest

speci cation document included manually written test cases

in natural language, corresponding to the speci ed require-

ments. An exampleof atest speci cation isshown in Figure2.

Each test casewasdesigned in aseriesof test steps, wherefor

each test step, the action and the expected result was speci-

ed. In addition, the pre-conditions and the post-conditions

for each test case were also speci ed, along with essential

metadata (such as priority, execution environment etc.) and

traceability to related requirements.

3https://dannorth.net/intr oducing-bdd/

Evaluating System-Level Test Generation for Industrial So ware AST ’22, May 17–18, 2022, Pi sburgh, PA, USA

Figure 1: An overview of the experimental methodology

Figure 2: Archi tecture i l lustration of re detection subsystem

of TCMS

mention that test scripts are developed manually in case of CT

but are generated automatically in TIGER for MBT. The reason

behind limiting CT at 2, 3 and 4-ways interaction strength is the

combinatorial explosion of test cases generated for complex sys-

tems with higher strength [37]. Similarly, the random generation

algorithm and edge coverage criterion of GW provides adequate

model and requirement coverage, which is an important metric for

our industrial partners.

3.4 RQ1: Coverage Assessment

A coverage metric is used to analyse the quality of a test suite

and measures the degree to which the code has been exercised

by a test suite. The testing of safety-critical subsystems of TCMS

at Alstom Transport AB need to follow EN 50128 and EN 50657

standards. These standards require that the code related to each

requirement should be executed by the test suite. Hence, in this

study, we have de ned two metrics, i.e., requirement coverage and

MC/DC to analyse the design and structural coverage provided by

a test suite.

Therequirement coveragerequiresthat requirementsof asystem

areexercisedby test casesat least once[43].Hence,weidenti ed the

total number of requirementsspeci ed in requirement speci cation

and analysed therequirementscovered by each test suiteto measure

the requirement coverage using the following formula:

' 4@D8A4< 4=C⇠>E4A064(' ⇠)%= (# ' ⇠/ ) # ' )G100

Where NRC represents number of requirements covered by test

cases and TNRdepicts total nnumber of requirements.

Astherequirement coveragedoesnot ensurethecoverageof log-

ical conditions and decisions of a system from the implementation

perspective, we have also used MC/DC to examine the structural

coverage of the test suites. We have de ned the MC/DC metric

according to the coverage points de ned for a MC/DC analysis

tool in [20]. Moreover, we have also analysed each condition of

MC/DC metric to investigate the least dominant condition a ected

by each technique to generate MC/DC adequate test suites. We

used the following formulas to determine the MC/DC of test suites

in percentage:

• Condition’s possible outcomes (C) %= (No. of conditions

having all possible outcomes/Total no. of conditions) x 100

• Decision’spossible outcomes(D) %= (No. of decision having

all possible outcomes/Total no. of decisions) x 100
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4.2.4 Data collection procedures 

The data collection for the case study and inputs required for modelling was performed using two different 

data collection techniques: direct contact with the testing team at BT and independent analysis of the artefacts 

produced by practitioners.  

Through consultations with the testing team at BT, the SUT to be modelled was selected from an on-going 

development project, for which the practitioners developed test cases manually and provided access to 

relevant artefacts (such as requirements specification and test specification) related to the SUT. One member 

from academia spent numerous hours to understand BT’s test process, SUT and the test cases written by 

industrial professionals. He also underwent trainings by an experienced test lead at BT to get acquainted with 

the test procedures and the software-in-the-loop testing process at BT. The academic team coordinated 

efforts to bring clarity in understanding the SUT and the testing process at BT. This involved numerous email 

exchanges and meetings between the industrial and academic parties as well as thorough scrutiny of the test 

related artefacts by the academic team. The manual test data was collected by using a post-mortem analysis 

of the available artifacts.  

The engineering processes of software development at BT are performed according to safety standards and 

regulations (e.g., EN 50128 standard is used for designing test cases). Each test case should contribute to the 

demonstration that a specified requirement has indeed been covered and satisfied. Executing test cases on 

TCMS is supported by a test framework that includes the comparison between the expected results with the 

actual outcome. 

4.2.5 Requirements specifications 

The requirements for the specific industrial scenario contained all the details about under what circumstances 

the TCMS should indicate external and internal fires in the cabs. These requirements have been specified in 

natural language but follows a pattern of ‘Given-Then-Within’ scenario description, like the ‘Given-When-

Then’ template as common in Behaviour Driven Development. The ‘Given’ clause specified the actions, ‘Then’ 

clause specified the observable outcome and ‘Within’ clause specified the timing constraints of each 

requirement. The ‘Given’ and ‘Then’ clauses for a requirement occasionally included multiple Boolean 

operators (AND/OR) to join conditions together. The requirements thus followed the following template:  

GIVEN {Statement 1} AND/OR {Statement 2} THEN TCMS shall {Statement 3} 

WITHIN {t Seconds}  

4.2.6 Test specification 

The main component in the test specification document included manually written test cases in natural 

language, corresponding to the specified requirements. An example of a test specification is shown in Figure 

17. Each test case was designed in a series of test steps, where for each test step, the action and the expected 

result was specified. In addition, the pre-conditions and the post-conditions for each test case were also 

specified, along with essential metadata (such as priority, execution environment etc.) and traceability to 

related requirements.  
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Figure 17. An illustration of a manually written test specification. 

4.2.7 Modelling of SUT 

We have modelled the expected behaviour of fire detection sub-system in GraphWalker (GW) studio by 

exploring and understanding the requirements and test specifications as well as by getting continuous input 

from the testing team at BT. GW studio is one of the versions of GW to create and validate the EFSM model 

of the system. The model created in GW studio consists of nodes, edges, and guard conditions. Nodes 

represent the states, edges represent the transition taken by the system from one state to another and guard 

conditions are Boolean expressions representing the expected behaviour of the model. To model the fire 

detection system, we have identified all possible states, transitions and guard conditions of the system based 

on requirements and test specification. Figure 18 depicts the EFSM model in three diagrams representing the 

SUT.  

 

Figure 18. EFSM Model representing the Fire Detection System controlled by BT’s TCMS 

Two diagrams (a) and (b) represent the FDCUs and one diagram (c) represents the TCMS as black box. FDCU1 

is an initial as well as shared node of the model. FDCU1Signal, FDCU2, FDCU2Signal, TCMSisActive and 

FDCUsFireSignals are rest of the shared nodes of the models. These shared nodes are used by the GW to 

traverse between different models while validating the model and generating test cases. Master, Slave, 

InternalFire, ExternalFire, InternalAndExternalFire and Reset nodes represent the other states of the SUT based 

Model-Based Testing in Practice: An Industrial Case Study using GraphWalker ISEC 2021, February 25–27, 2021, Bhubaneswar, Odisha, India

Figure 2. An illustration of a manually written test speci -

cation.

4 Results

This section describes our ndings in terms of modelling as-

pects, behavioural di erences between test cases generated

through GW and manual test cases, and our initial experi-

ences for selecting and using GW for industrial use.

4.1 Model-based Testing Using GraphWalker

In this study, we developed two versions of the model for

test case generation: in the rst version, wemodelled theex-

pected behaviour of the SUT by exploring the requirements

speci cation document alone and discussing the result with

the testing team, whereas in the second version, the model

was created by developing an understanding of the SUT

using both requirements speci cation as well as the test

speci cation and then discussing the result with the testing

team. In this section, we discuss the modelling process and

the di erence between the two versions of the model.

4.1.1 Model l ing the SUT using Requirements Speci -

cation. The rst step of modelling the SUT involved under-

standing theSUT by talking to thetesting team andexploring

the requirements speci cation document. The researchers

examined the requirements speci cation and identi ed the

possible states of the SUT and then added the guard con-

ditions according to the expected behaviour (as shown in

Figure 3).

Guard conditions are Boolean expressions that a ect the

behaviour of the FSM model by enabling or disabling the

actionsor transitionsupon evaluation. TheFSM-basedmodel

in GW consists of nodes (round-edged rectangular boxes)

and directed edges (arrows). The nodes represent the state

of the SUT, whereas edges represent the requests/decisions

when a certain event occurs. TCMSi sAct i ve nodeshows the

active state of TCMSwhile I nt er nal Fi r e, Ext er nal Fi r e

and Ext er nal AndI nt er nal Fi r e nodes represent types of

re indicated by the TCMS. The indication of re depends

on the signals sent by FDCUs, so the node and edges were

added showing the active state of the FDCUs. The signals

Figure 3. Initial FSM-based model created using the require-

ments speci cation

Figure4. Final FSM-basedmodel createdusing requirements

speci cations

sent by the FDCU are added as actions on edges covering

the requirements of the SUT to generate test cases. Figure 4

represents the nal model created using the requirements

speci cation.

4.1.2 Model l ing the SUT using Requirements and

Test Speci cation. In the second version, we re ned the

model using thepreviousknowledgeaswell asexploring the

test speci cation document. The test speci cation helped

us to understand the test objectives, test scenarios and be-

haviour of the SUT from a tester’s perspective. One new

nodes Reset was added to the model representing states

where the SUT can be reset to its initial state with corre-

sponding input values. This node was missing in the rst

version as it was not speci ed in the requirements spec-

i cation. On the other hand, a tester considered it as an

obvious requirements while designing the tests in the test

speci cation document. Similarly, 10 edges were added in

the initial model of the second version which helped us

identify the possible signals of FDCUs in the nal model

to cover the scenarios needed to generate data for com-

plete test suite. Figure 5 and Figure 6 depict the initial

and nal model created using both speci cations, respec-

tively. The nal model (Figure 6) consists of three diagrams;

Fig. 5. EFSM Model representing the Fire Detection System controlled by BT’s TCMS

In summary, the results show that when the faulty models

did not conform to requirements, TIGER-generated test scripts

had failed test steps on execution, with the exception of two

instances where GW did not generate the required failure-

triggering combinations. In comparison, the test scripts gen-

erated using the correct version of the model discovered no

fault in the SUT due to its conformance with requirements

specification as well as the implemented SUT.

TABLE II
COMPARISON BETWEEN TIGER-GENERATED TEST SCRIPTS USING

CORRECT MODEL AND MANUALLY-WRITTEN TEST SCRIPTS.

Test Generation
Source

No. of Test Steps
(Min-Max)

No. of Failed Test
Steps

Correct Model 264-514 0

Manually Written 24 0

V. DISCUSSION & VALIDITY THREATS

We have used three different mutation operators to evaluate

TIGER, however, we also tried with other mutation operators

discussed in [5]. These other mutation operators did not

result in any different behavior in our case. For example, we

induced some faults based on ‘arc missing’ , ‘output missing’ ,

‘event missing’ , ‘destination exchanged’ and ‘event exchange’

operators. But event and destination exchange had similar

affect on the model as output exchange. Similarly, output

missing, event missing and arc missing showed no affect on

the model, and induced faults based on these operators only

resulted in less input combinations with no failed test steps,

so we have neglected these operators in our study.

For a thorough evaluation of TIGER, a proper cost-benefit

analysis is required. Although, a large number of generated

test steps from TIGER yielded greater execution time than

manually written test steps, an added benefit may be is bet-

ter combinatorial coverage than manually-written test scripts.

However, a proper quantitative comparison with combinatorial

testing is left as an interesting future work, along with the

optimization to reduce the generation time and configuration

for use at a different level of simulation testing (application

level) for testing BT’s CPS.
One internal validity threat is regarding the correctness of

the model of the SUT. It took us several rounds of model-

ing to completely understand the requirements and the test

specifications to arrive at a correct model that was eventually

confirmed as correct by a BT test engineer. Other threats relate

to external validity and reliability such as human experience,

modelling notations and generator algorithms. We expect that

if a person with similar modelling and testing experience will

replicate this study using random walk and edge coverage

criterion of GW, similar results should be achieved. However,

different modelling notations and generator algorithms may

produce different results. Another issue is that the framework

is specifically designed for the CPS testing at BT, so it has

particularities that may not beapplicable to other CPSs but still

be applicable to multiple projects inside BT. Nevertheless, the

description of the framework and the mapping procedure can

give clues to companies operating in similar domains to apply

MBT in practice. We may also want the mutation testing at

the model level to be supplemented with more low, code-level

mutations and then validate our framework. We did not have

access to code for this study but if it becomes a possibility,

this research direction is worth investigating.

VI. CONCLUSION

We have proposed a MBT framework, TIGER, focused on

the concretization of abstract test cases and generation of test

scripts for CPSs where embedded software plays an important

part. There are three main parts of TIGER: abstract test case

generator, test case concretizer and finally, test case generator.

We have evaluated TIGER in terms of fault detection by

inducing faults in the model representing the SUT and then

generating and executing the test scripts. The results show

that test scripts generated by TIGER are executable, contains

concrete test data and can be used to uncover interaction faults

at SiL simulation level. The test scripts generated through

the correct model did not result in any failed execution step,

confirming the correct generation and execution, ensuring

conformance to the requirements specifications and the im-

plemented SUT.
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on requirements and test specifications. Similarly, 39 edges were added based on the expected behaviour of 

the SUT.  

4.2.8 Fault Injection in EFSM Model 

Due to unavailability of source code, we have injected some faults based on insertion and omission of mutant 

operators [4] in the model to produce faulty test scripts. We have used three mutant operators (output 

exchanged, change in guards/programming mistake and state missing) and created three versions of the 

faulty model. In first version of the faulty model, we exchanged the output values of internal and external fire 

such that if a system is supposed to indicate the internal fire, it will indicate the external fire and vice versa. 

Similarly, in second version, we made some changes in the guard conditions while we removed the Master 

state of one of the FDCUs in the third version to make these models contradictory to the original specification. 

4.3 Methodology 

4.3.1 Methodology for Experimentation on Requirement and MC/DC Coverage, 

Differences and Overlaps Between Test Cases and Performance Efficiency 

Figure 19 represents an overview of the methodology that we designed for one of the investigations.  

 

Figure 19. An overview of the experimental methodology for one set of experiments. 

The sequence of steps in our methodology are represented with numbers in Figure 19 and described below:  
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• (1.1) & (1.2) the analysis of requirements specification and test specification using an industrial case 

study of TCMS.  

• (2.1) & (2.2) identifying the parameters involved in defining the behaviour of the SUT and creating a 

model of the system in JSON format using GW.  

• (3.1), (3.2) & (3.3) generation of manual test suite by testers at BT and automated test suites by CAgen 

and TIGER. 

• (4) evaluating the test suites based on requirement and MC/DC coverage metrics. 

• (5) measuring the efficiency of test suites based on a cost model. 

• (6) assessing the differences and overlapping between the test suites. 

4.3.1.1 Test Suite Creation 

We took manual test suite created for the selected requirements by the testers at BT according to EN 50128 

and EN 50657 safety standards and regulations. The test suite consists of a set of test steps specifying test 

inputs, expected outputs and timing constraints in natural language based on specification-based testing. The 

design process of the test suite ensures that each requirement of the system has been covered and executed. 

After the designing of test cases, test scripts are created manually, executed on Software- in-the-Loop (SiL) 

level by a testing framework and a test verdict is generated.  

For the generation of test suites for CT and MBT, we have utilized CAgen and TIGER tools respectively. 

Particularly, we have considered all the signals used by the SUT for communication be- tween FDCUs, sensors, 

and TCMS as parameters and generated 2-ways, 3-ways, and 4-ways test suites, in the form of decision tables, 

through the CAgen tool. Furthermore, TIGER generated the test suite based on FSM model using 100% edge 

coverage and through random algorithm. It is important to mention that test scripts are developed manually 

in case of CT but are generated automatically in TIGER for MBT. The reason behind limiting CT at 2, 3 and 4-

ways interaction strength is the combinatorial explosion of test cases generated for complex systems with 

higher strength [5]. Similarly, the random generation algorithm and edge coverage criterion of GW provides 

adequate model and requirement coverage, which is an important metric for our industrial partners.  

4.3.1.2 Coverage Assessment 

A coverage metric is used to analyse the quality of a test suite and measures the degree to which the code 

has been exercised by a test suite. The testing of safety-critical subsystems of TCMS at BT need to follow EN 

50128 and EN 50657 standards. These standards require that the code related to each requirement should 

be executed by the test suite. Hence, in this study, we have defined two metrics, i.e., requirement coverage 

and MC/DC to analyse the design and structural coverage provided by a test suite.  

The requirement coverage requires that requirements of a system are exercised by test cases at least once 

[6]. Hence, we identified the total number of requirements specified in requirement specification and analysed 

the requirements covered by each test suite to measure the requirement coverage using the following 

formula:  
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𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝐶)% = (𝑁𝑅𝐶/𝑇𝑁𝑅)𝑥100  

Where NRC represents number of requirements covered by test cases and TNR depicts total number of 

requirements.  

As the requirement coverage does not ensure the coverage of logical conditions and decisions of a system 

from the implementation perspective, we have also used MC/DC to examine the structural coverage of the 

test suites. We have defined the MC/DC metric according to the coverage points defined for a MC/DC analysis 

tool in [7]. Moreover, we have also analysed each condition of MC/DC metric to investigate the least dominant 

condition affected by each technique to generate MC/DC adequate test suites. We used the following 

formulas to determine the MC/DC metric of test suites in percentage:  

• Condition’s possible outcomes (C) % = (No. of conditions having all possible outcomes/Total no. of 

conditions) x 100  

• Decision’s possible outcomes (D) % = (No. of decision having all possible outcomes/Total no. of 

decisions) x 100 

• Conditions affecting decisions independently (AC) % = (No. of conditions affected the decisions / 

Total no. of independently effecting conditions) x 100  

• Entry and exit point invoked (E) % = (Sum of no. of entry and exit points invoked/Sum of total no. of 

entry and exit points) x 100  

Hence, we have calculated the overall MC/DC of a test suite using the formula below.  

𝑀𝐶/𝐷𝐶% = (𝐶 + 𝐷 + 𝐴𝐶 + 𝐸)/4  

4.3.1.3 Efficiency Evaluation Criteria 

The efficiency of testing techniques can be measured by analysing the cost/time benefit of each technique 

based on direct and indirect costs [8]. The direct costs are the expenditures that are directly associated with 

testing techniques such as time for test creation and execution of test cases. The indirect costs are the 

expenditures that are indirectly associated with the testing techniques such as maintenance time, 

development of testing tools etc. Hence, to analyse the efficiency of a testing technique, we have developed 

an economic cost model based on direct costs and have neglected the indirect costs as the effect of indirect 

costs diminishes over time, for example, development of a tool is only a one-time effort. There- fore, in this 

model, we have considered the following parameters based on variable cost factors and time required to 

complete the activities defined in [9] and [10] as well as the actual activities adopted by testers at BT.  

The cost of testing activities that we have considered in our efficiency evaluation metrics for automated and 

manual testing include analysis of requirements specification (C𝑅), test suite development (C𝑇𝑆) and test 

execution (C𝐸). The requirements analysis involves understanding the behaviour of a system by thoroughly 

investigating functional (C𝑅𝑓) and non-functional (C𝑅𝑛𝑓) requirements as well as reviewing (C𝑅𝑟) these 

requirements to determine un- feasible requirements before the start of the development process. After 
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requirements analysis, test cases are designed followed by the development of test scripts and identifying 

concrete values (e.g., technical signal names) (C𝑠). The test scripts containing test steps (C𝐸𝑡𝑠) are then 

executed along with pre and post conditions (C𝐸𝑝𝑟𝑒, C𝐸𝑝𝑜𝑠𝑡) to generate test verdicts. However, in case of 

MBT in our context, a model is created (C𝑀) by identifying the states, transitions (C𝑀𝑐𝑠𝑡), guard conditions 

(C𝑀𝑐𝑔) and test scenarios (C𝑀𝑐𝑡) based on requirements analysis. Moreover, the test suite (C𝐺𝑡𝑠) is 

generated automatically by creating an XML file containing information about the signals (C𝐺𝑓) (e.g., technical 

signal names, primary signal names and data type etc.) and ensuring the correctness and conformance of a 

model (C𝑀𝑣) with system requirements. On the other hand, in case of manual testing, a tester designs test 

cases (C𝑇𝑐) and scripts (C𝑇𝑠𝑑) manually by specifying and developing system libraries (C𝑠𝑙). 

4.3.1.3.1 Parameters for cost calculation of MBT 

C𝑅 = Cost for Requirements Specification Analysis (C𝑅𝑓 + C𝑅𝑛𝑓 +C𝑅𝑟) 

C𝑅𝑓 = Cost to analyse functional Requirements 

C𝑅𝑛𝑓 = Cost to analyse non-function Requirements 

C𝑅𝑟 = Cost to review requirements 

C𝑀 = Cost for modelling the SUT (C𝑀𝑐 + C𝑀𝑣)  

C𝑀𝑐 = Cost to create and modify model (C𝑀𝑐𝑠𝑡 + C𝑀𝑐𝑔 + C𝑀𝑐𝑡) 

∗ C𝑀𝑐𝑠𝑡 = Cost to identify states and transitions ∗ C𝑀𝑐𝑔 = Cost to identify guard conditions 

∗ C𝑀𝑐𝑡 = Cost to identify test scenarios  

C𝑀𝑣 = Cost to validate the correctness of model 

C𝑇 𝑆 = Cost to generate MBT test cases and test scripts (C𝐺𝑓 + C𝐺𝑡𝑠) 

C𝐺𝑓 =Cost to prepare XML file containing logical and technical signal names 

C𝐺𝑡𝑠 = Cost to generate MBT abstract test cases and concrete test scripts 

C𝐸 = Cost to execute MBT test scripts 

C𝐸𝑝𝑟𝑒 = Cost to execute pre-conditions  

C𝐸𝑡𝑠 = Cost to execute test steps 

C𝐸𝑝𝑜𝑠𝑡 = Cost to execute post-conditions  

Based on the above defined parameters, the cost for MBT (C𝑀𝐵𝑇) can be summed below:  

𝐶𝑀𝑇 =𝐶𝑅 +𝐶𝑀 +𝐶𝑇𝑆 +𝐶𝐸  

4.3.1.3.2 Parameters for cost calculation of manual testing 

C𝑅 = Cost for Requirement Specification Analysis (C𝑅𝑓 + C𝑅𝑛𝑓 +C𝑅𝑟) 

C𝑅𝑓 = Cost to analyse functional Requirements 

C𝑅𝑛𝑓 = Cost to analyse non-function Requirements  

C𝑅𝑟 = Cost to review requirements  
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C𝑇𝑆 = Cost for the development of test suite (C𝑠 + C𝑇𝑐 + C𝑇𝑠) 

C𝑠 = Cost to Identify technical signals to use in test design  

C𝑇𝑐 = Cost for writing/designing test specification – test cases  

C𝑇 𝑠 = Cost for writing concrete test scripts (C𝑇 𝑠𝑙 + C𝑇𝑠𝑑)  

∗ C𝑇𝑠𝑙 = Cost for specifying and developing library functions  

∗ C𝑇𝑠𝑑 = Cost to develop test scripts  

C𝐸 = Cost to execute test scripts  

C𝐸𝑝𝑟𝑒 = Cost to execute pre-conditions 

C𝐸𝑡𝑠 = Cost to execute test steps 

C𝐸𝑝𝑜𝑠𝑡 = Cost to execute post-conditions  

Based on the above defined parameters, the total cost for manual testing (C𝑀𝑇) can be summed below:  

𝐶𝑀𝑇 =𝐶𝑅 +𝐶𝑇𝑆 +𝐶𝐸  

4.3.1.4 Parameters for cost calculation of CT 

The testing activities required for CT include all the activities like manual testing, just that test case 

development is automated in CT in our case. Hence, we have used the parameters of manual testing to 

determine the total cost for CT (C𝐶𝑇) too.  

𝐶𝐶𝑇 =𝐶𝑅 +𝐶𝑇𝑆 +𝐶𝐸 

4.3.1.5 Differences and Overlaps Assessment 

To measure the differences and overlaps between the test suites produced by each testing technique, we 

investigated the similar test sets and created a Venn diagram to show the distribution and intersection of 

different test sets between test suites. A Venn diagram shows the measure of union for sets using the measure 

of intersections between them. Hence, the illustration of relationships between the elements of test suites in 

Venn diagram is done using Meta-Chart which is an online data visualization tool. We provided the total 

number of elements and intersections between different combinations of test suites to create the Venn 

diagram. 

4.3.2 Methodology for Experimentation on Detailed Fault Detection Effectiveness, 

Sensitivity of Test Suites, and the Relationship Between MC/DC Coverage and 

Mutation Score 

Figure 20 represents an overview of the methodology that we designed for another investigation. 
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Figure 20.  An overview of the experimental methodology for another set of experiments. 

The methodology consists of five main steps:  

(1) analysis of system requirements and test specification (i.e., Steps (1.1), (1.2), and (1.3)),  

(2) development of mutated versions of the original program (i.e., (2.1), (2.2), and (2.3)),  

(3) creation of test suites using each testing technique (i.e., (3.1) and (3.2)),  

(4) deployment and execution of programs and test scripts to generate test results (i.e., (4.1), (4.2), and (4.3)),  

(5) evaluation of test scripts based on test results.  

4.3.2.1 Development of SUT and Mutation Injection 

The general principle of mutation analysis is to examine the detection of injected faults in an original program. 

These faults are injected based on some mutant operators that can be used to mimic a programmer’s 

common mistakes. So, we have used the original FBD program of the industrial case study developed by a 

developer at BT and created a set of mutants based on selected mutant operators manually. The selection of 

mutant operators is carried out by thoroughly reviewing the previous studies from the literature [11] [12] [13] 
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that applies mutation analysis specifically for the evaluation of testing technique, test coverage, or to generate 

test suites using FBD programs. Moreover, the development of safety- critical FBD programs at BT requires 

only specific FBD operators. So, by considering the safety-critical industrial case study and FBD- specific faults, 

we have used seven mutant operators as follows:  

• Logic Block Deletion Operator (LDO): to delete a logical block from the FBD program (e.g., deleting 

AND block).  

• Logic Block Insertion Operator (LIO): to insert another logical block between the logical blocks or the 

input signals of the FBD program (e.g., inserting AND block between the output of two OR blocks).  

• Logic Block Replacement Operator (LRO): to replace a logical block of the FBD program with another 

logical block of the same category (e.g., replacing the AND block with the OR block). 

• Logic Block Replacement Operator-Improved (LRO-I): to replace the logical block of the FBD 

program with a logical block of the same category and another logical block with Boolean input (e.g., 

replacing OR with RS).  

• Negation Insertion Operator (NIO): to insert the negation block at the inputs or outputs of other 

logical blocks.  

• Time Block Replacement Operator (TRO): to replace the timer block with another timer block (e.g., 

replacing TOF with TON).  

• Value Replacement Operator (VRO): to replace the constant value of a variable provided to a block 

with another value (e.g., replacing the timer variable from 3s to 6s).  

After injecting the faults based on the selected mutants, we used the BT -specific compiling tools to generate 

the builds of a train containing the mutated program. We used these builds to generate the simulations of a 

train, also known as virtual trains, to execute the test scripts at the software- in-the-loop level.  

4.3.2.2 Test Suite Creation 

To evaluate the test suite developed using manual testing, we used the manually created test suite by a tester 

at BT for the selected subsystem. Whereas, for MBT and CT, we have utilized automated test script generation 

tools i.e., TIGER (Model-Based Test scrIpt GenEration fRamework) [14] and CATSgen (Covering Array Test 

Script generator) to generate the test suites, respectively. Both automated tools are based on different abstract 

test case generation tools but use a similar procedure, and format of the XML file containing the information 



ADEPTNESS – 871319  PU 
D7.2 – Report on the Results of the Cost-Benefit Assessment 
 

 Adeptness – 871319   39 

   

about the signals (i.e., data type, logical and technical signal names) to generate the executable test scripts. 

Moreover, the test scripts developed by the selected techniques are implemented in the C# language. A brief 

description of the activities and tools for test suite generation of each testing technique is given in the 

subsequent subsections.  

4.3.2.2.1 Manual Test Suite Creation 

The testers at BT follow EN 50128 and EN 50657 safety standards and regulations to create the test suites 

based on Equivalence Partitioning (EP) and Boundary Value Analysis (BVA) testing techniques. However, in 

some cases, MC/DC coverage criterion is also used for the creation the test suites for testing complex systems. 

The test cases are written in natural language and consist of a set of test steps specifying test inputs for the 

system, expected output, and response time according to each requirement specified in the requirement 

specification. Requirement coverage is considered a de facto criterion at BT for test suite development to 

ensure that each requirement has been covered and executed by the test cases. After the creation of test 

cases, BT -specific libraries are used to write the test scripts manually.  

4.3.2.2.2 Model-Based Test Suite Creation 

For model-based test suite generation, we have utilized GraphWalker studio version to create the FSM model 

of the SUT and provided the model to TIGER along with an XML file to generate C# implemented test scripts. 

TIGER uses the CLI version of Graph- Walker to generate the abstract test cases in JSON for- mat by traversing 

through the model elements based on the selected generator algorithm (e.g., random, quick random, etc.) 

and coverage criteria (edge, vertex, requirement, etc.). It contains the implementation of some defined 

mapping rules for logical and technical signal names as well as information specific to BT’s testing framework 

(i.e., configurations, classes, and methods). After the generation of abstract test cases, it processes the data in 

a JSON file and utilizes the mapping rules along with testing framework-specific information to generate 

concrete test scripts. Hence, we generated the test suite by selecting the ‘random’ generator algorithm and 

100% edge coverage criteria using TIGER.  

4.3.2.2.3 Combinatorial Test Suite Creation 

There exist multiple combinatorial test generation tools to generate test cases using different algorithms and 

combinatorial interaction strengths [15]. However, these tools can only be used to generate abstract test cases 

in the form of a covering array. To execute the test cases on the BT -specific testing framework, these test 

cases need to be concretized and implemented in the C# language. Hence, to generate the combinatorial-

based test suites, we have developed our own CT test script generator called CATS-gen based on a state-of-

the-art combinatorial test generation tool known as CAgen. CAgen is an open- source tool and available in 

two versions (i.e., online web GUI and offline command-line) with comparatively high performance than other 

combinatorial test generation tools [16]. It provides three state-of-the-art metaheuristic search algorithms (i.e., 
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FIPOG, FIPOG-F, FIPOG-F2) to generate the test cases based on the t-ways testing strategy. We have 

considered the logical names of all the signals specified in the requirement specification as input parameters 

and utilized the web GUI online version of CAgen and selected the FIPOG heuristic algorithm to generate the 

test cases. We have also provided the test redundancy value ‘1’ with the ‘randomization of don’t care values’ 

for the generation of non-redundant test cases and limited the interaction strength to 2, 3, and 4-ways to 

avoid combinatorial explosion [17].  

After the creation of the test cases, we exported the generated test cases in an excel file and added the 

expected outputs and timing constraints against each test case manually by thoroughly analysing the 

requirements of the system. Then we provided the exported file along with an XML file as input to CATS- gen. 

CATSgen contains the implementation of mapping rules, like TIGER, to map the logical signal names and their 

respective values to the technical signal names. Moreover, it also contains the implementation details specific 

to the BT’s testing framework and libraries (e.g., configurations, classes, methods, etc.) to generate the 

executable test scripts. Hence, CATSgen extracted the data from the excel and XML files, used the mapping 

rules along with implementation details, and generated the test scripts in the C# language.  

4.3.2.3 Deployment and Execution of the SUT and Test Scripts 

After the generation of virtual trains and test scripts, we deployed the virtual trains on a laptop containing the 

software compatible with the BT -specific testing framework and test simulation platform for TCMS. Moreover, 

we used the BT-specific libraries and con- figuration files to set up the testing environment in a project using 

Visual Studio 2019 and executed the test scripts to generate test results in the form of test verdicts. The 

generated test verdicts contained passed and failed test steps that can be used to identify the detection of a 

fault produced by a mutant operator in a program. 

4.3.3 Methodology for Experimentation on the Practical Implications of Adopting Passive 

Testing using T-EARS and the Accompanying Toolchain 

The objective is to study the practical implications of adopting passive testing using T-EARS and the 

accompanying toolchain to a safety grade industrial context. We analyse the challenges encountered and our 

solutions to those challenges when writing, executing, and analysing passive tests written in T-EARS and its 

accompanying toolchain. The study’s context is the system level testing in an embedded vehicular software 

system.  

The studied case organization is responsible for developing TCMS (Train Control and Management System), 

an embedded safety-critical system controlling and monitoring software and hardware systems in a train. The 

different functions of a TCMS system constitute safety-related parts (SAFE), con- trolling safety-related 

functions, and non-safety-related parts (REGULAR) for non-safe control and monitoring functions written 

using the IEC 61131-3 programming language [18]. The focus of this study is on the safety-critical part (SAFE) 
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of TCMS. The engineering processes of TCMS software development are performed according to safety 

standards and regulations (e.g., EN 50128 [19]). Testing can be performed on a real train or different 

configurations of a simulated virtual train environment, illustrated in Figure 21. The “Train” includes everything 

required to perform end-to-end testing of the system under test (SUT). Typically, either simulated systems 

and train environment or a hardware (HIL-Rig) are used. In either case, the automated and manual test cases 

are not changed. Such tests can either be performed by a tester (in manual testing) or implemented as 

automated test scripts (performing the same sequence of actions and reaction checks as the manual tester 

would have done). Both manual and automated test cases can be used to log signals using the same logger, 

which is vital for applying a passive testing approach.  

The unit of analysis is the set of safety-related requirements, implementation, and system-level tests for a 

Safety Integrity Level 2 (SIL2) compliant TCMS application.  

 

Figure 21. Conceptual overview, TCMS Testing Environment. 

The system-level test cases are primarily written in natural language for manual test execution. These must 

be carefully written and reviewed to ensure that they cover all requirements and combinations and are feasible 

for testing in the intended test environment (i.e., the actual train). These tests take hours of manual labour to 

complete. However, while these manual tests provide valuable information about irregularities and 

contradicting results that would be hard to observe by strictly automated test cases, intermittent failures in 

unexpected situations are still difficult to catch with such a traditional testing approach.  

The studied requirements are described in a semi-formal format, as shown in Figure 22. Since there are two 

cab compartments for the train driver, A1 and A2, these are typically referred to as Cab x, meaning that the 

requirement applies to both Cab A1 and Cab A2. The example in Figure 2 starts with a natural language 

description of the requirements. The SAFE requirements have an additional semi-formal description, starting 

with an INPUT section, describing the condition under which the requirement shall be fulfilled. The condition 

includes a list of logical input signals, their respective values, and logical relations. In this example, the means 

of communication (e.g., MIO-S or IP) is also given to provide a bridge to the concrete system. This structure 

corresponds quite well to a guard in the G/A concept. The OUTPUT section lists logical signals and expected 

We follow these steps in this paper to show the encountered

challenges and the solutions used to make passive testing ap-

plicable in industrial-scale safety-critical system development.

I I I . METHOD

In this section, we outline the case study we performed in

an industrial setting, following [14].

A. Study Objective

The objective is to study the practical implications of

adopting passive testing using T-EARS and the accompanying

tool-chain to a safety grade industrial context. In particular, we

analyze the challenges encountered and our solutions to those

challenges when writing, executing, and analyzing passive

tests written in T-EARS and its accompanying tool-chain. The

study’s context is the system level testing in an embedded

vehicular software system.

B. Case organization & Unit of Analysis

The studied case organization is responsible for developing

TCMS (Train Control and Management System), an embedded

safety-critical system controlling and monitoring software and

hardware systems in a train. The different functions of a

TCMS system constitute safety-related parts (SAFE), con-

trolling safety-related functions, and non-safety-related parts

(REGULAR) for non-safe control and monitoring functions

written using the IEC 61131-3 programming language [15].

The focus of this study is on the safety-critical part (SAFE)

of TCMS. The engineering processes of TCMS software

development are performed according to safety standards and

regulations (e.g., EN 50128 [16]). Testing can be performed

on a real train or different configurations of a simulated

virtual train environment, illustrated in Figure 1. The “Train”

includes everything required to perform end-to-end testing

of the system under test (SUT). Typically either simulated

systems and train environment or a hardware (HIL-Rig) are

used. In either case, the automated and manual test cases

are not changed. Such tests can either be performed by a

tester (in manual testing) or implemented as automated test

scripts (performing the same sequence of actions and reaction

checks as the manual tester would have done). Both manual

and automated test cases can be used to log signals using

the same logger, which is vital for applying a passive testing

approach.

The unit of analysis is the set of safety-related requirements,

implementation and system-level tests for a Safety Integrity

Level 2 (SIL2)1 compliant TCMS application.

C. Safety Related Requirements

The system-level test cases are primarily written in natural

language for manual test execution. These must be carefully

written and reviewed to ensure that they cover all requirements

and combinations and are feasible for testing in the intended

test environment (i.e., the actual train). These tests take hours

1EN 50126 - Railway applications - The specification and demonstration
of Reliability, Availability, Maintainability and Safety (RAMS)

Fig. 1: Conceptual Overview, TCMS Testing Environment

of manual labor to complete. However, while these manual

tests provide valuable information about irregularities and

contradicting results that would be hard to observe by strictly

automated test cases, intermittent failures in unexpected situ-

ations are still difficult to catch with such a traditional testing

approach.

As long as any cab door is not closed and locked, start inhibit
shall be set.
INPUT:

- (MIO-S): Cab doors closed and locked in cab x = false
or invalid (both redundant signals from any cab in train)

OUTPUT:

- (IP) ‘Start inhibit reason’ includes ‘Cab doors not
closed’

- (internal): Start inhibit = true

Fig. 2: Example Requirement (slightly adjusted for readability)

The studied requirements are described in a semi-formal

format, as shown in Figure 2. Since there are two cab com-

partments for the train driver, A1 and A2, these are typically

referred to as Cab x, meaning that the requirement applies to

both Cab A1 and Cab A2. The example in Figure 2 starts

with a natural language description of the requirements. The

SAFE requirements have an additional semi-formal descrip-

tion, starting with an INPUT section, describing the condition

under which the requirement shall be fulfilled. The condition

includes a list of logical input signals, their respective values,

and logical relations. In this example, the means of communi-

cation (e.g., MIO-S or IP) is also given to provide a bridge to

the concrete system. This structure corresponds quite well to a

guard in the G/A concept. The OUTPUT section lists logical

signals and expected values (response) to the INPUT section’s

conditions. This part corresponds well to an assertion in the

G/A concept.

Safety-critical requirements typically summarize these logi-

cal INPUT and OUTPUT signals, so the same names are used

throughout an entire function or system.
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values (response) to the INPUT section’s conditions. This part corresponds well to an assertion in the G/A 

concept. 

 

Figure 22. Example Requirement (slightly adjusted for readability). 

Safety-critical requirements typically summarize these logical INPUT and OUTPUT signals, so the same names 

are used throughout an entire function or system.  
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an industrial setting, following [14].
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TCMS system constitute safety-related parts (SAFE), con-

trolling safety-related functions, and non-safety-related parts
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development are performed according to safety standards and

regulations (e.g., EN 50128 [16]). Testing can be performed
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virtual train environment, illustrated in Figure 1. The “Train”

includes everything required to perform end-to-end testing

of the system under test (SUT). Typically either simulated

systems and train environment or a hardware (HIL-Rig) are

used. In either case, the automated and manual test cases

are not changed. Such tests can either be performed by a

tester (in manual testing) or implemented as automated test

scripts (performing the same sequence of actions and reaction

checks as the manual tester would have done). Both manual

and automated test cases can be used to log signals using

the same logger, which is vital for applying a passive testing

approach.

The unit of analysis is the set of safety-related requirements,

implementation and system-level tests for a Safety Integrity

Level 2 (SIL2)1 compliant TCMS application.

C. Safety Related Requirements

The system-level test cases are primarily written in natural

language for manual test execution. These must be carefully

written and reviewed to ensure that they cover all requirements

and combinations and are feasible for testing in the intended

test environment (i.e., the actual train). These tests take hours
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of manual labor to complete. However, while these manual

tests provide valuable information about irregularities and

contradicting results that would be hard to observe by strictly

automated test cases, intermittent failures in unexpected situ-

ations are still difficult to catch with such a traditional testing

approach.

As long as any cab door is not closed and locked, start inhibit
shall be set.
INPUT:

- (MIO-S): Cab doors closed and locked in cab x = false
or invalid (both redundant signals from any cab in train)

OUTPUT:

- (IP) ‘Start inhibit reason’ includes ‘Cab doors not
closed’

- (internal): Start inhibit = true

Fig. 2: Example Requirement (slightly adjusted for readability)

The studied requirements are described in a semi-formal

format, as shown in Figure 2. Since there are two cab com-

partments for the train driver, A1 and A2, these are typically

referred to as Cab x, meaning that the requirement applies to

both Cab A1 and Cab A2. The example in Figure 2 starts

with a natural language description of the requirements. The

SAFE requirements have an additional semi-formal descrip-

tion, starting with an INPUT section, describing the condition

under which the requirement shall be fulfilled. The condition

includes a list of logical input signals, their respective values,

and logical relations. In this example, the means of communi-

cation (e.g., MIO-S or IP) is also given to provide a bridge to

the concrete system. This structure corresponds quite well to a

guard in the G/A concept. The OUTPUT section lists logical

signals and expected values (response) to the INPUT section’s

conditions. This part corresponds well to an assertion in the

G/A concept.

Safety-critical requirements typically summarize these logi-

cal INPUT and OUTPUT signals, so the same names are used

throughout an entire function or system.
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This phase’s outcome is a set of automated test cases and a set of requirements to be translated into 

passive test cases (G/As).  

4.3.3.2 Phase 2, Process Adoption 

This phase’s starting point is the T-EARS language and its accompanying toolchain, together with the 

proposed process of translating natural language requirements to passive test cases as G/As [20]. The purpose 

of this step is to explore how to apply this in practice in an industrial safety-critical context.  

Inputs to this phase are a set of automated test cases for a set of well-tested system functions and a set of 

requirements tested by those test cases. During the adoption procedure iterations, requirements are 

translated using the translation process [20] and compared to the gold standard. Iterations could cover the 

entire process from the requirement to tuned G/A or a particular step in the process, meeting a particular 

challenge. This iterative adoption procedure is based on the work of Staron [21]. Each iteration contains the 

following activities:  

• Diagnosing: Observations and analysis of challenges met during the different steps of the translation 

process.  

• Action-Planning: Discussions with other industry experts on possible solutions.  

• Action-Taking: Implementation or stubbing of suggested features.  

• Evaluation: Occurs at each iteration that ends with a set of tuned G/As. The resulting G/As are 

evaluated against the set of correct logs.  

• Learning: Information and reflections on the work per- formed are collected. The notes are then 

analysed and structured into a process, and tests are executed.  

This phase’s result is a set of improvements to the original process, a set of challenges that could not be  

solved or requirements on new tools, and a set of tuned G/As, translated from the requirements using the 

improved process.  

4.3.3.3 Phase 3, Final Evaluation 

The last phase in the case study is the final evaluation.  
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• The complete set of 116 SAFE requirements is analysed given the improvements from phase two. The 

suggestions are implemented to see the extent to which the results are useful.  

• Further, the resulting G/As from the second phase are evaluated over two signal logs from a manual 

test session with an expert.  

The results of this phase are a measurement of false positives from a well-tested system, as well as means to 

assess the degree to which the produced G/As can find injected faults that are hard to find using existing test 

cases. 

5 ANALYSIS OF THE RESULTS 

This section describes our findings in terms of:  

• Modelling aspects. 

• Behavioural differences between test cases generated through GW and manual test cases. 

• Initial experiences for selecting and using GW for industrial use. 

• Fault injection analysis to evaluate the test scripts generated by Model-Based Test scrIpt GenEration 

fRamework (TIGER). 

• MC/DC adequacy of two automated testing techniques (CT and MBT) and industrial manual testing 

at system-level.  

• Measuring requirement coverage and performance efficiency in terms of time.  

• An assessment of the differences and over- laps between the test suites generated by automated 

testing and manual industrial testing to better demonstrate the potential gains and trade-offs among 

them. 

• A detailed fault detection effectiveness of test suites. 

• Sensitivity of test suites to specific mutant operators. 

• Relationship between MC/DC coverage and mutation score. 

• The practical implications of adopting passive testing using T-EARS and the accompanying toolchain.  

5.1 Results on Modelling Aspects, Behavioural Differences Between Test Cases and Initial 

Experience 

5.1.1 Model-based Testing Using Graphwalker 

In our first investigation, we developed two versions of the model for test case generation: in the first version, 

we modelled the expected behaviour of the SUT by exploring the requirements specification document alone 

and discussing the result with the testing team, whereas in the second version, the model was created by 

developing an understanding of the SUT using both requirements specification as well as the test specification 

and then discussing the result with the testing team. In this section, we discuss the modelling process and the 

difference between the two versions of the model.  
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5.1.1.1 Modelling the SUT using Requirements Specification 

The first step of modelling the SUT involved under- standing the SUT by talking to the testing team and 

exploring the requirements specification document. The researchers examined the requirements specification 

and identified the possible states of the SUT and then added the guard conditions according to the expected 

behaviour (as shown in Figure 23).  

 

Figure 23. Initial FSM-based model created using the requirements specification. 

Guard conditions are Boolean expressions that affect the behaviour of the FSM model by enabling or disabling 

the actions or transitions upon evaluation. The FSM-based model in GW consists of nodes (round-edged 

rectangular boxes) and directed edges (arrows). The nodes represent the state of the SUT, whereas edges 

represent the requests/decisions when a certain event occurs. TCMSisActive node shows the active state of 

TCMS while InternalFire, ExternalFire and ExternalAndInternalFire nodes represent types of fire indicated by 

the TCMS. The indication of fire depends on the signals sent by FDCUs, so the node and edges were added 

showing the active state of the FDCUs. The signals sent by the FDCU are added as actions on edges covering 

the requirements of the SUT to generate test cases. Figure 24 represents the final model created using the 

requirements specification.  

 

Figure 24. Final FSM-based model created using requirements specifications. 
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Figure 2. An illustration of a manually written test speci -

cation.

4 Results

This section describes our ndings in terms of modelling as-

pects, behavioural di erences between test cases generated

through GW and manual test cases, and our initial experi-

ences for selecting and using GW for industrial use.

4.1 Model-based Testing Using GraphWalker

In this study, we developed two versions of the model for

test case generation: in the rst version, wemodelled theex-

pected behaviour of the SUT by exploring the requirements

speci cation document alone and discussing the result with

the testing team, whereas in the second version, the model

was created by developing an understanding of the SUT

using both requirements speci cation as well as the test

speci cation and then discussing the result with the testing

team. In this section, we discuss the modelling process and

the di erence between the two versions of the model.

4.1.1 Model l ing theSUT using Requirements Speci -

cation. The rst step of modelling the SUT involved under-

standing theSUT by talking to thetesting team andexploring

the requirements speci cation document. The researchers

examined the requirements speci cation and identi ed the

possible states of the SUT and then added the guard con-

ditions according to the expected behaviour (as shown in

Figure 3).

Guard conditions areBoolean expressions that a ect the

behaviour of the FSM model by enabling or disabling the

actionsor transitionsupon evaluation. TheFSM-basedmodel

in GW consists of nodes (round-edged rectangular boxes)

and directed edges (arrows). The nodes represent the state

of the SUT, whereas edges represent the requests/decisions

when a certain event occurs. TCMSi sAct i ve node shows the

active state of TCMSwhile I nt er nal Fi r e, Ext er nal Fi r e

and Ext er nal AndI nt er nal Fi r e nodes represent types of

re indicated by the TCMS. The indication of re depends

on the signals sent by FDCUs, so the node and edges were

added showing the active state of the FDCUs. The signals

Figure 3. Initial FSM-based model created using the require-

ments speci cation

Figure4. Final FSM-basedmodel createdusing requirements

speci cations

sent by the FDCU are added as actions on edges covering

the requirements of the SUT to generate test cases. Figure 4

represents the nal model created using the requirements

speci cation.

4.1.2 Model l ing the SUT using Requirements and

Test Speci cation. In the second version, we re ned the

model using thepreviousknowledgeaswell asexploring the

test speci cation document. The test speci cation helped

us to understand the test objectives, test scenarios and be-

haviour of the SUT from a tester’s perspective. One new

nodes Reset was added to the model representing states

where the SUT can be reset to its initial state with corre-

sponding input values. This node was missing in the rst

version as it was not speci ed in the requirements spec-

i cation. On the other hand, a tester considered it as an

obvious requirements while designing the tests in the test

speci cation document. Similarly, 10 edges were added in

the initial model of the second version which helped us

identify the possible signals of FDCUs in the nal model

to cover the scenarios needed to generate data for com-

plete test suite. Figure 5 and Figure 6 depict the initial

and nal model created using both speci cations, respec-

tively. The nal model (Figure 6) consists of three diagrams;
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re indicated by the TCMS. The indication of re depends

on the signals sent by FDCUs, so the node and edges were

added showing the active state of the FDCUs. The signals

Figure 3. Initial FSM-based model created using therequire-

ments speci cation

Figure4. Final FSM-basedmodel createdusing requirements

speci cations

sent by the FDCU are added as actions on edges covering

the requirements of the SUT to generate test cases. Figure 4

represents the nal model created using the requirements

speci cation.

4.1.2 Model l ing the SUT using Requirements and

Test Speci cation. In the second version, we re ned the

model using thepreviousknowledgeaswell asexploring the

test speci cation document. The test speci cation helped

us to understand the test objectives, test scenarios and be-

haviour of the SUT from a tester’s perspective. One new

nodes Reset was added to the model representing states

where the SUT can be reset to its initial state with corre-

sponding input values. This node was missing in the rst

version as it was not speci ed in the requirements spec-

i cation. On the other hand, a tester considered it as an

obvious requirements while designing the tests in the test

speci cation document. Similarly, 10 edges were added in

the initial model of the second version which helped us

identify the possible signals of FDCUs in the nal model

to cover the scenarios needed to generate data for com-

plete test suite. Figure 5 and Figure 6 depict the initial

and nal model created using both speci cations, respec-

tively. The nal model (Figure 6) consists of three diagrams;
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5.1.1.2 Modelling the SUT using Requirements Specification and Test Specification 

In the second version, we refined the model using the previous knowledge as well as exploring the test 

specification document. The test specification helped us to understand the test objectives, test scenarios and 

behaviour of the SUT from a tester’s perspective. One new nodes Reset was added to the model representing 

states where the SUT can be reset to its initial state with corresponding input values. This node was missing 

in the first version as it was not specified in the requirements specification. On the other hand, a tester 

considered it as an obvious requirement while designing the tests in the test specification document. Similarly, 

10 edges were added in the initial model of the second version which helped us identify the possible signals 

of FDCUs in the final model to cover the scenarios needed to generate data for complete test suite. Figure 

25 and Figure 26 depict the initial and final model created using both specifications, respectively. The final 

model (Figure 26) consists of three diagrams: two diagrams representing FDCUs and one diagram 

representing the TCMS as black box. These diagrams contain shared nodes, which are used by GW while 

traversing from one diagram to another. FDCU1 is an initial and shared node whereas FDCU1Signal, FDCU2, 

FDCU2Signal, TCMSisActive and FDCUsFireSignals are other shared nodes. Moreover, MasterState and 

SlaveState nodes represent the ‘Master’ and ‘Slave’ states of the FDCU. The purpose of developing two 

separate diagrams explicitly representing the FDCUs in the final version of the model was to cover more test 

scenarios. GW can traverse through the elements of FDCU diagrams providing the TCMS different 

combinations of signals using random walks. The single- diagram model, on the other hand, can only provide 

the specific values of signals provided by the user as actions on its edges. Moreover, by generating random 

walks for the final model, we were able to identify an incorrect guard condition, which was not identified in 

the single-diagram model.  

In discussions with the test team at BT, it was also concluded that the final model represented the behaviour 

of the SUT more completely than the first version of the model which was created using the requirement 

specification alone. 

 

Figure 25. Initial FSM-based model created from requirements and test specifications. 

ISEC 2021, February 25–27, 2021, Bhubaneswar, Odisha, India Zafar et al.

Figure 5. Initial FSM-based model created from require-

ments and test speci cations.

two diagrams representing FDCUs and one diagram rep-

resenting the TCMS as black box. These diagrams con-

tain shared nodes, which are used by GW while travers-

ing from one diagram to another. FDCU1 is an initial and

shared node whereas FDCU1Si gnal , FDCU2, FDCU2Si gnal ,

TCMSi sAct i ve and FDCUsFi r eSi gnal s are other shared

nodes. Moreover, Mast er St at e and Sl aveSt at e nodes rep-

resent the ‘Master’ and ‘Slave’ states of the FDCU. The pur-

pose of developing two separate diagrams explicitly repre-

senting the FDCUs in the nal version of the model was

to cover more test scenarios. GW can traverse through the

elements of FDCU diagrams providing the TCMSdi erent

combinations of signals using random walks. The single-

diagram model, on the other hand, can only provide the

speci c values of signals provided by the user as actions on

itsedges. Moreover,by generating random walksfor the nal

model, wewereable to identify an incorrect guard condition,

which was not identi ed in the single-diagram model.

In discussions with the test team at BT, it was also con-

cluded that the nal model represented the behavior of the

SUT more completely than the rst version of the model

which wascreated using therequirement speci cation alone.

4.1.3 Model l ing Aspects. MBT isknown toprovideabet-

ter understanding of the domain and the SUT to generate

testware [13]. However, in order to create a complete and

representative model of the SUT, all relevant details about

the test object or SUT need to be made available.

The Degree of Test Model Completeness and Model

Evolution. As shown in Figure 4, the rst version of the

model was created using requirements speci cations and it

contained behavioural aspects of the SUT. However, the sec-

ond version of themodel, created using both requirements

and test speci cations, contained more complete informa-

tion about the expected behaviour of the SUT as well as

incorporated tester’s perspective to cover all the scenarios

as depicted in Figure 6. The second version of the model

includes additional information about the states of the SUT,

which were not mentioned in requirements speci cation.

For example, there is a condition where the TCMScan be

reset to its initial state before testing the next scenarios for

indicating internal or external re in both cabs. This speci c

additional information about the condition, which was only

available in the test speci cation, resulted in the addition of

one new node in the model representing TCMSas well as

creation of the models representing FDCUs in the second

version as compared to the rst version of the model of the

same SUT.

Thus, in order to create a complete behavioral model of

theSUT, relying only on requirements speci cation resulted

in less-than-optimal model (having fewer edges and states)

in our case. While, the model created using both types of

artifacts (requirements and test speci cations) led to a more

complete representation of the scenarios and expected be-

havior. This, in turn, is expected to help generate test cases

that realistically cover more testing scenarios.

Model Representativeness. Moreover, in our case, the

test speci cation also provided information about the SUT

in a more clearer and concrete way, which included infor-

mation about signals sent by the FDCUs to the TCMS. Re-

quirements speci cation did contain information about the

FDCUs (i.e., FDCUs could be in a master or slave state), but

did not clarify the total number of FDCUs used to signal

theTCMS. Similarly, it wasalso not clear from the require-

ments speci cation alone if FDCUs should send the signals

about its states along with re indication to the TCMSor

not. Thus, in our case, understanding and analyzing both

requirements and test speci cations resulted in a more rep-

resentative model of the SUT. Therefore, according to our

analysis, to generate quality tests using MBT, one should

consider di erent characteristics of the test object and test

objectives while creating the MBT model. And the model of

the SUT created using both requirements and test speci -

cations ismorecomplete and representative than the model

created using the requirements speci cation alone.

Additionally, as we have created the nal model in an

incremental approach by getting continuous input from the

testing team at BT; wealso observed that the lack of domain

knowledgeor accessto team membersworking on SUT could

cause conformance issues between the model and the SUT.

Moreover, it can directly a ect the e ort for developing the

model and quality of generated test cases.

We observed that input artifacts in uence the usefulness of

theresulting model for MBT. Input artifactsfor themodelling

of the SUT should include the documents from which the

requirements can be inferred but also the test speci cation

from manual test planning activities.
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Figure 26. Final FSM-based shared model with multiple diagrams created from requirements and test 

specifications having shared nodes. 

5.1.1.3 Modelling Aspects 

MBT is known to provide a better understanding of the domain and the SUT to generate test ware [23]. 

However, to create a complete and representative model of the SUT, all relevant details about the test object 

or SUT need to be made available.  

5.1.1.3.1 The degree of test model completeness and model evolution 

The first version of the model was created using requirements specifications and it contained behavioural 

aspects of the SUT. However, the second version of the model, created using both requirements and test 

specifications, contained more complete information about the expected behaviour of the SUT as well as 

incorporated tester’s perspective to cover all the scenarios. The second version of the model includes 

additional information about the states of the SUT, which were not mentioned in requirements specification. 

For example, there is a condition where the TCMS can be reset to its initial state before testing the next 

scenarios for indicating internal or external fire in both cabs. This specific additional information about the 

condition, which was only available in the test specification, resulted in the addition of one new node in the 

model representing TCMS as well as creation of the models representing FDCUs in the second version as 

compared to the first version of the model of the same SUT.  

Model-Based Testing in Practice: An Industrial Case Study using GraphWalker ISEC 2021, February 25–27, 2021, Bhubaneswar, Odisha, India

Figure 6. Final FSM-based shared model with multiple diagrams created from requirements and test speci cations having

shared nodes

4.2 Behavioural Di erences Between MBT and

Manual ly Created Test Cases

GW walks the directed graph of the SUT in a fashion deter-

mined by the “generator” algorithm and generates tests on

every run until the “stopping condition” is met. Thereare a

variety of generator algorithms available in GW to traverse

themodel, however, not all of them weresuitable for compar-

ison with manual test generation and we discuss this limita-

tion in Section 6. Thus, weused therandom generator for the

comparison with manual test generation, which navigates

themodel in a random fashion or takes a random walk from

each node. In thiscomparison, wehaveevaluated four di er-

ent stopping conditions for GW: edge_coverage(100) in which

the test generation is stopped when 100%of unique edges

are traversed, vertex_coverage(100) when test generation is

stopped when 100%of unique nodes/states are traversed,

requirement_coverage(100) in which the test generation is

stoppedwhen 100%of uniquerequirementsaretraversedand

length(100) when 100 edge-nodepairs are traversed. There

are other supported stopping conditions in GW that were

found not suitable for comparison with manual test cases;

this limitation is discussed in Section 6.

Edge coverage is a stronger coverage criterion than node

coveragealoneas it includes traversing of both elementsof a

model (nodes and edges) [13]. We have used “edge coverage

%” as a measure to quantify how thoroughly a model has

been validated for each stopping condition. However, for

manually written test cases, we have calculated the “edge

coverage %” by comparing “action” and “expected result”

de ned for each step with the edges representing similar

actions or transitions in the model. There are several other

model coverage criteria available [8, 13], but we leave the

measurement of those asa futurework (Section 7). “Require-

ments coverage frequency” depicts the number of times a

certain requirement gets covered using multiple test steps;

it isparticularly bene cial to cover a requirement multiple

times in a safety critical system (as is provided by TCMS)

as well as to uncover interaction faults at system level. As

GW generates the test cases using random walks through

the model, the “number of test steps generated” can vary

for each attempt. So, we generated test cases 3 times and se-

lected thetest caseswith maximum number of test stepsand

have reported the gures in “Number of Test Steps Gener-

ated” and “EdgeCoverage%” columns in Table1. Thereason

to select the highest number of test steps in the three test

generation attempts is to optimize the edge coverage as well

as to improve the frequency of requirements coverage. Simi-

larly, requirements coverage frequency of each requirement

can get a ected through random walks. Subsequently, we

calculated the minimum and maximum requirements cov-

erage frequency provided by the generated test steps for

the three execution attempts, as reported in the column “Re-

quirements Coverage Frequency (Min–Max)” of Table 1; the
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Thus, to create a complete behavioural model of the SUT, relying only on requirements specification resulted 

in less-than-optimal model (having fewer edges and states) in our case. While the model created using both 

types of artifacts (requirements and test specifications) led to a more complete representation of the scenarios 

and expected behaviour. This, in turn, is expected to help generate test cases that realistically cover more 

testing scenarios.  

5.1.1.3.2 Model representativeness 

Moreover, in our case, the test specification also provided information about the SUT in a clearer and more 

concrete way, which included information about signals sent by the FDCUs to the TCMS. Requirements 

specification did contain information about the FDCUs (i.e., FDCUs could be in a master or slave state) but 

did not clarify the total number of FDCUs used to signal the TCMS. Similarly, it was also not clear from the 

requirements specification alone if FDCUs should send the signals about its states along with fire indication to 

the TCMS or not. Thus, in our case, understanding and analysing both requirements and test specifications 

resulted in a more representative model of the SUT. Therefore, according to our analysis, to generate quality 

tests using MBT, one should consider different characteristics of the test object and test objectives while 

creating the MBT model. And the model of the SUT created using both requirements and test specifications 

is completer and more representative than the model created using the requirements specification alone.  

Additionally, as we have created the final model in an incremental approach by getting continuous input from 

the testing team at BT; we also observed that the lack of domain knowledge or access to team members 

working on SUT could cause conformance issues between the model and the SUT. Moreover, it can directly 

affect the effort for developing the model and quality of generated test cases.  

5.1.2 Behavioural Differences Between MBT and Manually Created Test Cases 

GW walks the directed graph of the SUT in a fashion deter- mined by the “generator” algorithm and generates 

tests on every run until the “stopping condition” is met. There are a variety of generator algorithms available 

in GW to traverse the model, however, not all of them were suitable for comparison with manual test 

generation. Thus, we used the random generator for the comparison with manual test generation, which 

navigates the model in a random fashion or takes a random walk from each node. In this comparison, we 

have evaluated four different stopping conditions for GW: edge_coverage(100) in which the test generation is 

stopped when 100% of unique edges are traversed, vertex_coverage(100) when test generation is stopped 

when 100% of unique nodes/states are traversed, requirement_coverage(100) in which the test generation is 

stopped when 100% of unique requirements are traversed and length(100) when 100 edge-node pairs are 

traversed. There are other supported stopping conditions in GW that were found not suitable for comparison 

with manual test cases.  
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Edge coverage is a stronger coverage criterion than node coverage alone as it includes traversing of both 

elements of a model (nodes and edges) [23]. We have used “edge coverage %” as a measure to quantify how 

thoroughly a model has been validated for each stopping condition. However, for manually written test cases, 

we have calculated the “edge coverage %” by comparing “action” and “expected result” defined for each step 

with the edges representing similar actions or transitions in the model. There are several other model coverage 

criteria available [24, 23], but we leave the measurement of those as a future work. “Requirements coverage 

frequency” depicts the number of times a certain requirement gets covered using multiple test steps; it is 

particularly beneficial to cover a requirement multiple times in a safety critical system (as is provided by TCMS) 

as well as to uncover interaction faults at system level. As GW generates the test cases using random walks 

through the model, the “number of test steps generated” can vary for each attempt. So, we generated test 

cases 3 times and selected the test cases with maximum number of test steps and have reported the figures 

in “Number of Test Steps Generated” and “Edge Coverage %” columns in Table 5. The reason to select the 

highest number of test steps in the three test generation attempts is to optimize the edge coverage as well 

as to improve the frequency of requirements coverage. Similarly, requirements coverage frequency of each 

requirement can get affected through random walks. Subsequently, we calculated the minimum and 

maximum requirements coverage frequency provided by the generated test steps for the three execution 

attempts, as reported in the column “Requirements Coverage Frequency (Min–Max)” of Table 5; the value of 

this metric for manual test cases remains constant due to deterministic, sequential order of coverage.  

The results show that manually written test cases have 26 test steps and covered the requirements in a 

sequential order whereas MBT generated higher numbers of test steps using different stopping conditions in 

a random order. Model-based test cases resulted in an increased requirements coverage frequency, when 

looking at the maximum figures, than the manually written test cases. All the test cases generated by GW 

using different stopping conditions provided 100% requirements coverage. The same is also true for manual 

test cases. However, test cases generated using edge_coverage(100) provided full edge coverage whereas 

partial edge coverage was achieved by other stopping conditions and manually written test cases.  

After analysing manually written and GW-generated test cases, we found that as GW generates the test steps 

by traversing the edges and nodes, thirteen test steps are required in our case to cover one specific scenario. 

However, these steps can vary depending on the number of diagrams representing the SUT as well as the 

edges and nodes traversed by GW to fulfil requirements; an example of it is shown in Table 6. The manually 

written test cases, on the other hand, require one test step per requirement as shown in Table 7. Furthermore, 

test steps generated by GW also include complete and clear details (i.e., signals from each FDCU and its 

respective values) in test steps while manual test steps do not contain such details for each signal. In Table --

, the “Test Steps” column for GW-generated test cases represent nodes and edges, “Action/Expected Result” 

represents the specified actions at edges and resulting nodes. 
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Table 5.  Comparison between manually written and MBT generated test cases using different stopping 

conditions provided by GW. 

 

Table 6. An example of test steps generated by GW. 

 

Table 7. An equivalent manually created test step corresponding to the example in Table 6 (the pre- and 

post-conditions are omitted for clarity). 

 

5.1.3 Initial Experience with GW for Industrial Case Modelling and Test Generation 

In this section, we summarize our experiences of selecting and making use of GW as the MBT tool of choice 

for application on the TCMS industrial case.  
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5.1.3.1 Selection of GW as the MBT Tool 

Both industrial and academic/research considerations played its role in the selection of GW as the model-

based tool of choice in this work. Previous research [25] shows that applicability, usability, and expressiveness 

are important attributes for MBT tool selection from an industrial uptake point of view. Two other important 

attributes of tool selection for our industrial partner were open-source availability and continuous 

development/maintenance of the tool. From an academic/research point of view, in addition to all the above-

mentioned attributes, we were particularly interested in the less-researched aspect of online test generation 

capability as compared to the more prevalent offline test generation capability of the tool. To compare a 

representative sample of the available tools, we did a non-exhaustive search for MBT tools and compared 

them against important attributes. The results are summarized in Table 8. GW was selected due to its active 

development/maintenance in terms of latest year of modification, its availability as an open-source tool, its 

features of both offline and online test generation as well as usability in terms of modelling the SUT as a state 

machine that is understandable to both researchers and practitioners.  

Table 8. A non-exhaustive comparison of a brief selection of available MBT tools. 

 

5.1.3.2 Using GW for Test Generation 

GW is available in three versions: GraphWalker studio, GraphWalker CLI, and GW4E as Eclipse plugin. All the 

three versions provide some detailed and well-formatted online documentations and tutorials for support 

and learning purposes. We have found GW4E more user-friendly than GraphWalker studio and GraphWalker 

CLI in terms of debugging, execution of tests, and generating information for testers and developers but it 

supports limited stopping criteria (i.e., time duration in our case). In our experience, GraphWalker studio and 

GraphWalker CLI provide more functionality and options, but are less usable and user-friendly. GraphWalker 

studio can be used for modelling and validating the model by traversing through the model elements but 

does not explicitly generate test artifacts. Whereas the lack of a user interface in the GraphWalker CLI results 

in cumbersome activities due to the repetitive and manual use of CLI commands when using the test 
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generation functionality. Furthermore, GraphWalker CLI requires the use of an additional tool for modelling 

of the SUT in JSON/graphML modelling language and it generates the test cases in JSON format.  

5.2 Results of Fault Injection Analysis to Evaluate TIGER-Generated Test Scripts 

5.2.1 Generation and Execution of Test Scripts 

After creating different versions of model, we have generated the test cases and scripts multiple times using 

each model. We provided logical and technical names of the signals to TIGER and executed the test scripts 

on the SUT. Here we report results from five test generations based on the variation in number of generated 

test steps and the failed test steps. We have also executed the manually written test scripts to compare the 

test verdicts with TIGER-generated test scripts.  

5.2.2 Fault Injection Analysis 

As shown in Table 9, no fault was identified in the SUT by executing the manually written test scripts. The 

correct version of the model conforms with the requirements specification of the SUT; hence no failed test 

steps were reported on each execution of test scripts generated using it. On the other hand, different number 

of failed test steps were identified by the test scripts generated from faulty models (as shown in Table 10). 

However, number of generated test steps were different in each test script due to random walks of GW for 

the generation of test cases. We have also analysed the combinations of inputs to evaluate the requirements 

coverage of the generated test scripts. We observed that all test scripts generated using correct version of 

the model contained at least one combination for each requirement and provided 100% requirements 

coverage. It was also observed that one of test scripts generated using the ‘change guard’ mutant model 

missed the combination required to produce failed test steps. Similarly, no failed test step(s) was identified in 

some of the test scripts with ‘state missing’ mutant. It was attributed to the missing Master state and GW made 

the FDCU ‘slave’ in initial steps while generating the test cases, hence provided no combination that could 

produce failed test step. 

 

Table 9. Comparison Between TIGER-Generated Test Scripts Using Correct Model and Manually Written Test 

Scripts. 

 

 

 

Fig. 5. EFSM Model representing the Fire Detection System controlled by BT’s TCMS

In summary, the results show that when the faulty models

did not conform to requirements, TIGER-generated test scripts

had failed test steps on execution, with the exception of two

instances where GW did not generate the required failure-

triggering combinations. In comparison, the test scripts gen-

erated using the correct version of the model discovered no

fault in the SUT due to its conformance with requirements

specification as well as the implemented SUT.

TABLE II
COMPARISON BETWEEN TIGER-GENERATED TEST SCRIPTS USING

CORRECT MODEL AND MANUALLY-WRITTEN TEST SCRIPTS.

Test Generation
Source

No. of Test Steps
(Min-Max)

No. of Failed Test
Steps

Correct Model 264-514 0
Manually Written 24 0

V. DISCUSSION & VALIDITY THREATS

We have used three different mutation operators to evaluate

TIGER, however, we also tried with other mutation operators

discussed in [5]. These other mutation operators did not

result in any different behavior in our case. For example, we

induced some faults based on ‘arc missing’ , ‘output missing’ ,

‘event missing’ , ‘destination exchanged’ and ‘event exchange’

operators. But event and destination exchange had similar

affect on the model as output exchange. Similarly, output

missing, event missing and arc missing showed no affect on

the model, and induced faults based on these operators only

resulted in less input combinations with no failed test steps,

so we have neglected these operators in our study.

For a thorough evaluation of TIGER, a proper cost-benefit

analysis is required. Although, a large number of generated

test steps from TIGER yielded greater execution time than

manually written test steps, an added benefit may be is bet-

ter combinatorial coverage than manually-written test scripts.

However, a proper quantitative comparison with combinatorial

testing is left as an interesting future work, along with the

optimization to reduce the generation time and configuration

for use at a different level of simulation testing (application

level) for testing BT’s CPS.
One internal validity threat is regarding the correctness of

the model of the SUT. It took us several rounds of model-

ing to completely understand the requirements and the test

specifications to arrive at a correct model that was eventually

confirmed as correct by a BT test engineer. Other threats relate

to external validity and reliability such as human experience,

modelling notations and generator algorithms. We expect that

if a person with similar modelling and testing experience will

replicate this study using random walk and edge coverage

criterion of GW, similar results should be achieved. However,

different modelling notations and generator algorithms may

produce different results. Another issue is that the framework

is specifically designed for the CPS testing at BT, so it has

particularities that may not beapplicable to other CPSsbut still

be applicable to multiple projects inside BT. Nevertheless, the

description of the framework and the mapping procedure can

give clues to companies operating in similar domains to apply

MBT in practice. We may also want the mutation testing at

the model level to be supplemented with more low, code-level

mutations and then validate our framework. We did not have

access to code for this study but if it becomes a possibility,

this research direction is worth investigating.

VI. CONCLUSION

We have proposed a MBT framework, TIGER, focused on

the concretization of abstract test cases and generation of test

scripts for CPSs where embedded software plays an important

part. There are three main parts of TIGER: abstract test case

generator, test case concretizer and finally, test case generator.

We have evaluated TIGER in terms of fault detection by

inducing faults in the model representing the SUT and then

generating and executing the test scripts. The results show

that test scripts generated by TIGER are executable, contains

concrete test data and can be used to uncover interaction faults

at SiL simulation level. The test scripts generated through

the correct model did not result in any failed execution step,

confirming the correct generation and execution, ensuring

conformance to the requirements specifications and the im-

plemented SUT.
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Table 10. Comparison Between TIGER-Generated Test Scripts Using Correct and Faulty Models. Red Shade 

Shows Failed Test Steps and Green Shows No Failures Detected. 

 

In summary, the results show that when the faulty models did not conform to requirements, TIGER-generated 

test scripts had failed test steps on execution, except for two instances where GW did not generate the 

required failure- triggering combinations. In comparison, the test scripts generated using the correct version 

of the model discovered no fault in the SUT due to its conformance with requirements specification as well as 

the implemented SUT. 

5.3 Results of MC/DC Adequacy, Requirements Coverage, Overlap of Test Cases and 

Performance Efficiency 

5.3.1 Requirement and MC/DC Coverage 

The requirement and MC/DC coverage of test suites generated by the three different techniques (MBT, 

manual and CT) is shown in Figure 27 whereas Figure 28 represents the breakdown of MC/DC coverage 

according to the metric parameters.  

 

Figure 27. Requirement and MC/DC coverage of test suites. 

Evaluating System-Level Test Generation for Industrial So ware AST ’22, May 17–18, 2022, Pi sburgh, PA, USA

– CB= Cost to Identify technical signals to use in test design

– C) 2 = Cost for writing/designing test speci cation – test

cases

– C) B = Cost for writing concrete test scripts (C) B; + C) B3 )

⇤C) B; = Cost for specifying and developing library func-

tions

⇤C) B3 = Cost to develop test scripts

• C⇢= Cost to execute test scripts

– C⇢?A4 = Cost to execute pre-conditions

– C⇢CB = Cost to execute test steps

– C⇢?>BC= Cost to execute post-conditions

Based on the above de ned parameters, the total cost for manual

testing (C" ) ) can be summed below:

⇠" ) = ⇠' +⇠) ( +⇠⇢

3.5.3 Parameters for cost calculation of CT.

• Thetesting activities required for CT includeall theactivities

similar to manual testing, just that test case development

is automated in CT in our case. Hence, we have used the

aforementioned parameters of manual testing to determine

the total cost for CT (C⇠) ) too.

⇠⇠) = ⇠' +⇠) ( +⇠⇢

3.6 RQ3: Di erences and Overlaps Assessment

To measure the di erences and overlaps between the test suites

produced by each testing technique, we investigated the similar

test sets and created a Venn diagram to show the distribution and

intersection of di erent test sets between test suites. A Venn dia-

gram shows the measure of union for sets using the measure of

intersections between them. Hence, the illustration of relationships

between the elements of test suites in Venn diagram is done using

Meta-Chart5 which isan onlinedatavisualization tool. Weprovided

the total number of elements and intersections between di erent

combinations of test suites to create the Venn diagram.

3.7 Assumptions

In evaluation metricsmentioned above, wehavemadesomeexplicit

assumptions:

• In the coverage metric based on MC/DC, as we do not have

access to the source code; we assume that every entry and

exit point of a program is invoked when a condition for a

decision is evaluated as true.

• In the cost model, we estimated the execution time only for

the passed test scripts.

• For the di erences and overlaps between test suites, there

aremultiple combinations in a test case which can beconsid-

ered as ‘don’t care’ (having no e ect on the decision), so we

considered only those test cases similar across the test suites

and redundant within the test suite which contains similar

combinations of inputs a ecting the decision of a system.

4 RESULTS

In this section, we provide a quantitative analysis of the data to

answer the research questions.

5https://www.meta-chart.com/venn#/data

4.1 RQ1: Requirement and MC/DC Coverage

The requirement and MC/DC coverage of test suites generated by

the three di erent techniques (MBT, manual and CT) is shown in

Figure 4 whereas Figure 5 represents the breakdown of MC/DC

coverage according to the metric parameters.

Figure 4: Requirement and MC/DC coverage of test suites

Figure 5: MC/DC coverage of test sui tes according to selected

parameters

The results showed that all the test suites contained test cases

covering each requirement of the system at least once except the

test suite generated by 2-ways combinatorial test strategy that

provided 66%requirement coverage. However, the MBT-generated

test suite is the most MC/DC adequate by providing 88%MC/DC

coverage as shown in Figure 4. Test suites generated using 2-ways,

3-ways, 4-ways combinatorial test strategy and by manual testing

provided 59%, 76%, 80%and 79%MC/DC coverage, respectively.

The analysis of test suites in terms of MC/DC also showed the

e ect of each technique on the conditions of MC/DC as shown

in Figure5. The results indicated that each technique a ected the

generation of such test cases which can be used to verify the ‘e ect

of a condition independently on the outcome of a decision’. Conse-

quently, the MBT-generated test suite covered 55%of conditions to

verify the independent e ects on a decisions, whereas test suites

generated using 2-ways, 3-ways, 4-ways combinatorial test strat-

egy, and created manually covered 5%, 5%, 22%and 16%of such

conditions, respectively. However, in case of CT test strategies, two
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Figure 28. MC/DC coverage of test suites according to selected parameters. 
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requirement coverage. However, the MBT-generated test suite is the most MC/DC adequate by providing 

88% MC/DC coverage. Test suites generated using 2-ways, 3-ways, 4-ways combinatorial test strategy and 

by manual testing provided 59%, 76%, 80% and 79% MC/DC coverage, respectively.  

The analysis of test suites in terms of MC/DC also showed the effect of each technique on the conditions of 

MC/DC. The results indicated that each technique affected the generation of such test cases which can be 

used to verify the ‘effect of a condition independently on the outcome of a decision’. Consequently, the MBT-

generated test suite covered 55% of conditions to verify the independent effects on a decision, whereas test 

suites generated using 2-ways, 3-ways, 4-ways combinatorial test strategy, and created manually covered 5%, 

5%, 22% and 16% of such conditions, respectively. However, in case of CT test strategies, two other conditions 
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Table 11. MC/DC coverage of MBT and CT. 

 

The analysis of test suites in terms of MC/DC and requirement coverage showed that MBT and manually 

developed test suites were more MC/DC and requirement coverage adequate and contained complete test 

cases (we designate a test case as complete having input(s), expected output(s) and timing constraint(s)). The 

completeness of test cases is dependent on the availability of the required information about the system; thus, 

one can argue that the test engineer and the model of the SUT utilized all the relevant information such as 

the behaviour of the system (functional and non-functional requirements), test scenarios known to the tester 

based on domain knowledge and experience, and information regarding system environment to create test 

suites. Our results also showed that adequacy of CT-generated test suite increased with an increase of 

interaction strength. Moreover, it contained no in- formation about the expected behaviour of the system 

and test environment. Hence, tester’s assistance was required to specify the expected outputs to complete 

the test suites (this cost is captured as part of the parameter, C𝑇𝑠𝑑 = Cost to develop test scripts). 

5.3.2  Efficiency of Test Suites 

Efficiency of test suites is generally calculated based on three factors i.e., time required for requirements 

analysis, time required for creation of a test suite and time required for execution of it. However, for simplicity, 

we have not reported the time for the analysis of requirements specification in the results as there was no 

significant difference between the time spent on the analysis phase by each technique. Moreover, we have 

divided the test suite development time according to the activities required by each testing technique as 

shown in Table 12. We have also reported the accumulated time of different activities required for modelling 

and execution phases. It is also important to mention here that the time required by a tester for adding 

expected outputs to complete the CT-generated test cases is also included in test script development time of 

CT.  
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Table 12. Efficiency measurements (in seconds) of test suites created by each technique. N/A is short for not 

applicable. 

 

The results showed that the development of a test suite using MBT was less efficient than CT due to additional 

activities i.e., modelling of the SUT and verification of the model’s conformance with system requirements. 

The identification of signals in case of MBT also had a significant effect on the development time as it also 

involved the creation of XML file to generate executable test scripts. Whereas regardless of manual test script 

development in CT, CT required a significantly less test suite development time as compared to MBT and 

Manual testing.  

The analysis also showed that the number of generated test cases in a test suite had a significant effect on 

the execution time. Consequently, the test suite generated using 2-ways test strategy required minimum 

execution time. The execution times required by the test suites generated using 3-ways, 4-ways testing 

strategies and MBT were greater than the manual test suite due to the additional number of test cases (more 

specifically, the test steps). However, based on the total time of all activities required by each testing technique, 

CT resulted in being the most efficient, MBT stood second and manual testing came out to be the least 

efficient technique. 

5.3.3 Differences and Overlaps Between the Test Generation Techniques 

To measure the differences and overlaps between the test suites, we have identified similar test cases in each 

test suite generated from different techniques and created a subsequent Venn diagram as shown in Figure 

29. However, we have removed the redundant test cases within each test suite to provide one-to-one 

mapping between the similar test cases generated by each technique.  

 

Figure 29. Venn Diagram representing the differences and overlaps between the test suites. 
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Table 2: E ciency measurements (in seconds) of test suites created by each technique. N/A is short for not appl icable.

Techniques
No. of test

cases

Development time of test cases and scripts (C" ), (C) ( ) Execution

time (C⇢)
Total time

Modelling of

SUT

Veri cation

of model

Signal identi-

cation

Test case de-

velopment

Test script de-

velopment

Manual 17 N/A N/A 2400 15600 9600 300 27900

MBT 150 16800 1800 2700 5 2 600 20107

CT 2-ways 10 N/A N/A 2400 2 7200 240 9842

CT 3-ways 22 N/A N/A 2400 2 10200 360 12962

CT 4-ways 50 N/A N/A 2400 2 13800 420 16622

and traceability. However, the generation of MBT-based test suite

is dependent on the conformance of the model representing the

SUT. CT-generated test suites did not contain expected outputs but

provided more test scenarios that can beused to validate the model

as well as to complement the manual testing of the SUT.

It can be analyzed from Figure 6 and Column 3 of Table 3 that

MBT generated most of the unique test cases. Particularly, it is

interesting to see the impact of unique test cases in each test suite

on MC/DC and requirement coverage. Hence, for experimentation

purposes, we discarded all the unique test cases from each test

suite and measured their impact. Subsequently, results indicated

that MC/DC coverage reduced from 88%to 84%in case of MBT.

However, no change was observed in requirement coverage of the

MBT-generated test suite. In case of other testing techniques, no

major e ect on MC/DC and requirement coverage was reported.

We conclude that MBT-generated unique test cases are also highly

relevant for covering MC/DC in asafety critical system ascompared

to the unique test cases generated by other approaches. Moreover,

addition of these unique test cases will improve the e ectiveness

of manually created test suite in terms of MC/DC coverage.

Figure 6: Venn Diagram representing the di erences and

overlaps between the test suites

5 DISCUSSION

Our results regarding the requirement coverage show that all the

techniques, except 2-ways, achieved 100%requirement coverage.

The techniques di ered more with respect to the ful lment of dif-

ferent conditions for MC/DC. Overall, the MC/DC condition that

evaluates the e ectiveness of the test suites in terms of ‘indepen-

dent e ect on the outcome of a decision’ was the least dominant

Table 3: Number of non-redundant test cases within each test

suite and unique test cases across the test suites

Technique No. of non-

redundant

test cases

within each

test suite

No. of

unique test

cases across

the test

suites

Percentage of

simi lar test

cases across

the test sui tes

on average %

MBT 39 9 71

Manual 17 2 54

CT 2-ways 8 1 25

CT 3-ways 20 2 44

CT 4-ways 34 3 53

Table 4: Number of di erent test cases in each pair of test

suite

Technique MBT Manual CT

2-ways

CT

3-ways

CT

4-ways

MBT N/A 26 32 28 16

Manual 4 N/A 10 7 4

CT 2-ways 1 1 N/A 3 2

CT 3-ways 9 10 15 N/A 12

CT 4-ways 11 21 28 26 N/A

Table 5: Number of overlapped test cases in each pair of test

suite

Technique Manual CT 2-ways CT 3-ways CT 4-ways

MBT 13 7 11 23

Manual N/A 7 10 13

CT 2-ways - N/A 5 6

CT 3-ways - - N/A 8

condition ful lled by all the test suites. The rest of the MC/DC con-

ditions weremet 100%by MBT, manual testing and higher strength

CT (3- and 4-ways).

Our results have also shown that MBT gave far greater number

of unique test caseswhen compared with CT and manual testing. In

terms of e ciency, MBT is found to be better than manual testing

but worsethan CT. For CT,weobserved that increasing thestrength
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SUT. CT-generated test suites did not contain expected outputs but
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MBT-generated test suite. In case of other testing techniques, no
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relevant for covering MC/DC in asafety critical system ascompared
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addition of these unique test cases will improve the e ectiveness

of manually created test suite in terms of MC/DC coverage.

Figure 6: Venn Diagram representing the di erences and

overlaps between the test sui tes

5 DISCUSSION

Our results regarding the requirement coverage show that all the

techniques, except 2-ways, achieved 100%requirement coverage.

The techniques di ered more with respect to the ful lment of dif-

ferent conditions for MC/DC. Overall, the MC/DC condition that

evaluates the e ectiveness of the test suites in terms of ‘indepen-

dent e ect on the outcome of a decision’ was the least dominant

Table 3: Number of non-redundant test cases within each test

sui te and unique test cases across the test sui tes

Technique No. of non-

redundant

test cases

wi thin each

test sui te

No. of

unique test

cases across

the test

sui tes

Percentage of

simi lar test

cases across

the test sui tes

on average %

MBT 39 9 71

Manual 17 2 54

CT 2-ways 8 1 25

CT 3-ways 20 2 44

CT 4-ways 34 3 53

Table 4: Number of di erent test cases in each pair of test

sui te

Technique MBT Manual CT

2-ways

CT

3-ways

CT

4-ways

MBT N/A 26 32 28 16

Manual 4 N/A 10 7 4

CT 2-ways 1 1 N/A 3 2

CT 3-ways 9 10 15 N/A 12

CT 4-ways 11 21 28 26 N/A

Table 5: Number of overlapped test cases in each pair of test

sui te

Technique Manual CT 2-ways CT 3-ways CT 4-ways

MBT 13 7 11 23

Manual N/A 7 10 13

CT 2-ways - N/A 5 6

CT 3-ways - - N/A 8

condition ful lled by all the test suites. The rest of the MC/DC con-

ditions were met 100%by MBT, manual testing and higher strength

CT (3- and 4-ways).

Our results have also shown that MBT gave far greater number

of unique test caseswhen compared with CT and manual testing. In

terms of e ciency, MBT is found to be better than manual testing

but worsethan CT. For CT, weobserved that increasing thestrength
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Table 13 presents an illustration of the total number of non-redundant test cases within the test suite, unique 

test cases across the test suites, and percentage of similar test cases across the test suites on average, whereas 

Tables 14 and 15 show the differences and number of test cases overlapping between the pair of each test 

suite, respectively.  

Table 13. Number of non-redundant test cases within each test suite and unique test cases across the test 

suites. 

 

Table 14. Number of different test cases in each pair of test suite 

 

Table 15. Number of overlapped test cases in each pair of test suite 

 

The analysis of Figure 29 showed that the MBT-generated test suite contained the highest numbers of test 

cases generated by other techniques (approx. 71% of test cases on average). The test suites developed by CT 

using 4-ways, 3-ways, 2-ways, and manual testing contained approx. 53%, 44%, 25% and 54% of similar test 

cases on average, respectively. MBT and 2-ways had the greatest overlap (MBT suite contained almost 90% 

(7 out of 8) of test cases generated using 2-ways). MBT-generated test cases had the second greatest overlap 
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condition ful lled by all the test suites. The rest of the MC/DC con-
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CT (3- and 4-ways).
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Our results regarding the requirement coverage show that all the

techniques, except 2-ways, achieved 100%requirement coverage.

The techniques di ered more with respect to the ful lment of dif-

ferent conditions for MC/DC. Overall, the MC/DC condition that

evaluates the e ectiveness of the test suites in terms of ‘indepen-

dent e ect on the outcome of a decision’ was the least dominant

Table 3: Number of non-redundant test cases within each test

suite and unique test cases across the test suites

Technique No. of non-

redundant

test cases

within each

test suite

No. of

unique test

cases across

the test

suites

Percentage of

simi lar test

cases across

the test sui tes

on average %

MBT 39 9 71

Manual 17 2 54

CT 2-ways 8 1 25

CT 3-ways 20 2 44

CT 4-ways 34 3 53

Table 4: Number of di erent test cases in each pair of test

suite

Technique MBT Manual CT

2-ways

CT

3-ways

CT

4-ways

MBT N/A 26 32 28 16

Manual 4 N/A 10 7 4

CT 2-ways 1 1 N/A 3 2

CT 3-ways 9 10 15 N/A 12

CT 4-ways 11 21 28 26 N/A

Table 5: Number of overlapped test cases in each pair of test

suite

Technique Manual CT 2-ways CT 3-ways CT 4-ways

MBT 13 7 11 23

Manual N/A 7 10 13

CT 2-ways - N/A 5 6

CT 3-ways - - N/A 8

condition ful lled by all the test suites. The rest of the MC/DC con-

ditions were met 100%by MBT, manual testing and higher strength

CT (3- and 4-ways).

Our results have also shown that MBT gave far greater number

of unique test caseswhen compared with CT and manual testing. In

terms of e ciency, MBT is found to be better than manual testing

but worsethan CT. For CT, weobserved that increasing thestrength
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Table 2: E ciency measurements (in seconds) of test suites created by each technique. N/A is short for not appl icable.

Techniques
No. of test

cases

Development time of test cases and scripts (C" ), (C) ( ) Execution

time (C⇢)
Total time

Modelling of

SUT

Veri cation

of model

Signal identi-

cation

Test case de-

velopment

Test script de-

velopment

Manual 17 N/A N/A 2400 15600 9600 300 27900

MBT 150 16800 1800 2700 5 2 600 20107

CT 2-ways 10 N/A N/A 2400 2 7200 240 9842

CT 3-ways 22 N/A N/A 2400 2 10200 360 12962

CT 4-ways 50 N/A N/A 2400 2 13800 420 16622

and traceability. However, the generation of MBT-based test suite

is dependent on the conformance of the model representing the

SUT. CT-generated test suites did not contain expected outputs but

provided more test scenarios that can beused to validate the model

as well as to complement the manual testing of the SUT.

It can be analyzed from Figure 6 and Column 3 of Table 3 that

MBT generated most of the unique test cases. Particularly, it is

interesting to see the impact of unique test cases in each test suite

on MC/DC and requirement coverage. Hence, for experimentation

purposes, we discarded all the unique test cases from each test

suite and measured their impact. Subsequently, results indicated

that MC/DC coverage reduced from 88%to 84%in case of MBT.

However, no change was observed in requirement coverage of the

MBT-generated test suite. In case of other testing techniques, no

major e ect on MC/DC and requirement coverage was reported.

We conclude that MBT-generated unique test cases are also highly

relevant for covering MC/DC in asafety critical system ascompared

to the unique test cases generated by other approaches. Moreover,

addition of these unique test cases will improve the e ectiveness

of manually created test suite in terms of MC/DC coverage.

Figure 6: Venn Diagram representing the di erences and

overlaps between the test suites

5 DISCUSSION

Our results regarding the requirement coverage show that all the

techniques, except 2-ways, achieved 100%requirement coverage.

The techniques di ered more with respect to the ful lment of dif-

ferent conditions for MC/DC. Overall, the MC/DC condition that

evaluates the e ectiveness of the test suites in terms of ‘indepen-

dent e ect on the outcome of a decision’ was the least dominant

Table 3: Number of non-redundant test cases within each test

suite and unique test cases across the test suites

Technique No. of non-

redundant

test cases

within each

test suite

No. of

unique test

cases across

the test

suites

Percentage of

simi lar test

cases across

the test sui tes

on average %

MBT 39 9 71

Manual 17 2 54

CT 2-ways 8 1 25

CT 3-ways 20 2 44

CT 4-ways 34 3 53

Table 4: Number of di erent test cases in each pair of test

suite

Technique MBT Manual CT

2-ways

CT

3-ways

CT

4-ways

MBT N/A 26 32 28 16

Manual 4 N/A 10 7 4

CT 2-ways 1 1 N/A 3 2

CT 3-ways 9 10 15 N/A 12

CT 4-ways 11 21 28 26 N/A

Table 5: Number of overlapped test cases in each pair of test

suite

Technique Manual CT 2-ways CT 3-ways CT 4-ways

MBT 13 7 11 23

Manual N/A 7 10 13

CT 2-ways - N/A 5 6

CT 3-ways - - N/A 8

condition ful lled by all the test suites. The rest of the MC/DC con-

ditions weremet 100%by MBT, manual testing and higher strength

CT (3- and 4-ways).

Our results have also shown that MBT gave far greater number

of unique test caseswhen compared with CT and manual testing. In

terms of e ciency, MBT is found to be better than manual testing

but worsethan CT.For CT,weobserved that increasing thestrength
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with manual test cases whereby MBT suite contained 76% of test cases from manual (13 out of 17). The analysis 

of test suites also showed that the test suite generated by MBT was more similar, and hence complete, to 

specification-based manual testing as it contained constraints (i.e., time) and test inputs along with expected 

outputs, which can be used to determine requirement coverage and traceability. However, the generation of 

MBT-based test suite is dependent on the conformance of the model representing the SUT. CT-generated 

test suites did not contain expected outputs but provided more test scenarios that can be used to validate 

the model as well as to complement the manual testing of the SUT.  

It can be analysed from Figure 29 that MBT generated most of the unique test cases. Particularly, it is 

interesting to see the impact of unique test cases in each test suite on MC/DC and requirement coverage. 

Hence, for experimentation purposes, we discarded all the unique test cases from each test suite and 

measured their impact. Subsequently, results indicated that MC/DC coverage reduced from 88% to 84% in 

case of MBT. However, no change was observed in requirement coverage of the MBT-generated test suite. 

In case of other testing techniques, no major effect on MC/DC and requirement coverage was reported. We 

conclude that MBT-generated unique test cases are also highly relevant for covering MC/DC in a safety critical 

system as compared to the unique test cases generated by other approaches. Moreover, addition of these 

unique test cases will improve the effectiveness of manually created test suite in terms of MC/DC coverage. 

5.4 Results of Detailed Fault Detection Effectivess, Sensitivity of Test Suites and the 

Relationship Between MC/DC Coverage and Mutation Score 

In this section, we provide the experimental results in terms of fault detection effectiveness for each test suite 

using mutation score, the sensitivity of each test suite towards mutation operators, and an analysis of the 

relationship between MC/DC and mutation score in detecting faults.  

5.4.1 Fault Detection Effectiveness of Test Suites 

To measure the fault detection effectiveness of each test suite, we created 50 mutants of the original FBD 

program based on mutation operators and calculated the mutation score for each test suite. The mutation 

scores are shown in Column 5 of Table 16. It is important to mention here that we have considered only non-

equivalent mutants in our results and excluded the equivalent mutants after carefully examining the test results 

and alive mutants manually. For example, we added an XOR between two operators in one of the LIO mutants, 

and none of the test suites detected this fault. On examining this mutant, we found out that it had an apparent 

effect at the internal level, but that effect did not propagate towards the overall output of the program. Hence, 

we declared this mutant an equivalent and excluded it from the results. Table 16 shows the result of each test 

suite in terms of mutation score, and the total number of killed and alive mutants. 
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Table 16. Mutation score of each testing technique. 

 

 Table 17 depicts the number of common mutants killed and alive between the pairs of test suites. Whereas 

Figure 30 illustrates the overlaps and differences between alive mutants of each test suite. 

Table 17. No. of common killed and alive mutants between the pairs of test suites. 

 

 

Figure 30.  Venn diagram representing the overlaps and differences between alive mutants. 

The results show that CT-generated test suites provide the highest mutation scores by detecting 90% of the 

mutants when using 3-ways and 4-ways interaction strength while requiring 1140 and 1680 seconds as an 

average execution time per mutant, respectively. In contrast, CT 2-ways, manual, and MBT achieved 82%, 

86%, and 88% mutation scores respectively, and 780, 600, and 2760 seconds of average execution time per 

mutant, respectively. Moreover, the number of un- detected mutants in manual, CT 2-ways, CT 3-ways, CT 

4-ways, and MBT were 7, 9, 5, 5, and 6, respectively. We observed that MBT generated the highest number 

Table 1: Mutation score of each testing technique.

Techniques No. of Test Cases Mutants Killed (MK)% Mutants Alive (MA)% Mutation Score%

Manual 17 43 7 86

CT 2-ways 10 41 9 82

CT 3-ways 22 45 5 90

CT 4-ways 50 45 5 90

MBT 150 (39 after ex-
cluding identical
test cases)

44 6 88

Table 2: No. of common killed and alivemutants between the pairs of test suites.

Techniques CT 2-ways CT 3-ways CT 4-ways MBT
(MK / MA) (MK / MA) (MK / MA) (MK / MA)

Manual 41/7 42/4 43/5 41/4

CT 2-ways N/A 41/5 41/5 39/4

CT 3-ways - N/A 41/5 43/4

CT 4-ways - - N/A 43/4

cution time per mutant while achieving a86% of mu-
tation score. A summary of our observations regard-
ing alivemutants across all test suites is as follows:

• The total number of mutants not detected by man-
ual testing, 2-ways, 3-ways, 4-ways, and MBT
were7, 9, 5, 5, and 6, respectively. 4 of thesealive
mutants were common among all the test suites.

• The manual test suite did not detect 3 alive mu-
tants that were also included in the subset of alive
mutants in CT 2-ways, whereas 1 mutant amongst
the 3 was also not detected by the 2-ways and 4-
ways generated test suites.

• The use of CT 2-ways generated test suite did not
detect 1 unique alive mutant which was killed by
each of the other test suites.

• CT 3-waysand 2-waysgenerated test suites had 1
alive mutant which was not killed by either of the
test suites.

• Lastly, 2 unique mutants were not detected by the
MBT-generated test suite.

4.2 RQ2: Sensitivity of Test Suites to

Specific Mutation Operators

To examine the type of faults prone to be detected by
each test suite, we calculated the mutation scores as
per each mutation operator. We also developed a bar
graph based on the results to analyze the breakdown
of mutation scores of each test suite as shown in Fig-
ure 3.

Figure 3 shows some meaningful implications
based on the mutants killed by different test suites.
All test suites detected each of the mutants injected

Figure3: Percentage of mutantskilled by each test suiteper
operator.

by 3 out of 7 mutation operators i.e., LDO, LIO, and
VRO, and provided 100% mutation scores for these
mutation operators. On the other hand, none of the
test suites detected any mutant induced in theoriginal
program based on the TRO mutation operator, con-
sequently providing 0% mutation scores. In the case
of LRO-I, all the test suites achieved 100% mutation
scores except MBT, which achieved only 83%. For
the NIO-based mutants, all the test suites achieved
86% mutation scores except 2-ways, which achieved
77%. Similarly, 3-ways, 4-ways, and MBT attained
asimilar mutation score of 93% by detecting mutants
injected based on LRO, whereas 2-ways and manual
achieved 75% and 81%, respectively.

Based on these results, we observe that for each
mutation operator except TRO, each testing technique
did not generate such combinations (i.e. combina-
tions of inputs invoking the faulty area of the code
affected by the alive mutant) that could be used to
reach 100% mutation score. In order to detect TRO-
based mutants, each test suite requires special test
cases targeting the basic integrity (i.e., ensuring the
starting states of the system) while entering a state
within specified time, which can be used to vali-
date the timing related requirements of the system.

Table 1: Mutation score of each testing technique.

Techniques No. of Test Cases Mutants Killed (MK)% Mutants Alive (MA)% Mutation Score%

Manual 17 43 7 86

CT 2-ways 10 41 9 82

CT 3-ways 22 45 5 90

CT 4-ways 50 45 5 90

MBT 150 (39 after ex-
cluding identical
test cases)

44 6 88

Table 2: No. of common killed and alivemutants between thepairs of test suites.

Techniques CT 2-ways CT 3-ways CT 4-ways MBT
(MK / MA) (MK / MA) (MK / MA) (MK / MA)

Manual 41/7 42/4 43/5 41/4

CT 2-ways N/A 41/5 41/5 39/4

CT 3-ways - N/A 41/5 43/4

CT 4-ways - - N/A 43/4

cution time per mutant while achieving a86% of mu-
tation score. A summary of our observations regard-
ing alivemutants across all test suites is as follows:

• Thetotal number of mutants not detected by man-
ual testing, 2-ways, 3-ways, 4-ways, and MBT
were7, 9, 5, 5, and 6, respectively. 4 of thesealive
mutants were common among all the test suites.

• The manual test suite did not detect 3 alive mu-
tants that were also included in the subset of alive
mutants in CT 2-ways, whereas1 mutant amongst
the 3 was also not detected by the 2-ways and 4-
ways generated test suites.

• The use of CT 2-ways generated test suite did not
detect 1 unique alive mutant which was killed by
each of the other test suites.

• CT 3-waysand 2-waysgenerated test suites had 1
alive mutant which was not killed by either of the
test suites.

• Lastly, 2 unique mutants were not detected by the
MBT-generated test suite.

4.2 RQ2: Sensitivity of Test Suites to

Specific Mutation Operators

To examine the type of faults prone to be detected by
each test suite, we calculated the mutation scores as
per each mutation operator. We also developed a bar
graph based on the results to analyze the breakdown
of mutation scores of each test suite as shown in Fig-
ure3.

Figure 3 shows some meaningful implications
based on the mutants killed by different test suites.
All test suites detected each of the mutants injected

Figure3: Percentageof mutantskilled by each test suiteper
operator.

by 3 out of 7 mutation operators i.e., LDO, LIO, and
VRO, and provided 100% mutation scores for these
mutation operators. On the other hand, none of the
test suites detected any mutant induced in theoriginal
program based on the TRO mutation operator, con-
sequently providing 0% mutation scores. In the case
of LRO-I, all the test suites achieved 100% mutation
scores except MBT, which achieved only 83%. For
the NIO-based mutants, all the test suites achieved
86% mutation scores except 2-ways, which achieved
77%. Similarly, 3-ways, 4-ways, and MBT attained
asimilar mutation score of 93% by detecting mutants
injected based on LRO, whereas 2-ways and manual
achieved 75% and 81%, respectively.

Based on these results, we observe that for each
mutation operator except TRO, each testing technique
did not generate such combinations (i.e. combina-
tions of inputs invoking the faulty area of the code
affected by the alive mutant) that could be used to
reach 100% mutation score. In order to detect TRO-
based mutants, each test suite requires special test
cases targeting the basic integrity (i.e., ensuring the
starting states of the system) while entering a state
within specified time, which can be used to vali-
date the timing related requirements of the system.

4 RESULTS

In this section, we provide the experimental results
of our study in terms of fault detection effectiveness
for each test suite using mutation score, the sensitiv-
ity of each test suite towards mutation operators, and
an analysis of the relationship between MC/DC and
mutation score in detecting faults.

4.1 RQ1: Fault Detection Effectiveness

of Test Suites

To measure the fault detection effectiveness of each
test suite, we created 50 mutants of the original FBD
program based on mutation operators as described in
Section 3.3 and calculated themutation score for each
test suite. The mutation scores are shown in Column
5 of Table 1. It is important to mention here that
we have considered only non-equivalent mutants in
our results and excluded theequivalent mutants5 after
carefully examining the test results and alive mutants
manually. For example, we added an XOR between
two operators in one of the LIO mutants, and none of
the test suites detected this fault. On examining this
mutant, we found out that it had an apparent effect
at the internal level, but that effect did not propagate
towards the overall output of the program. Hence,
we declared this mutant an equivalent and excluded it
from the results. Table 1 shows the result of each test
suite in terms of mutation score, and the total num-
ber of killed and alive mutants. Table 2 depicts the
number of common mutants killed and alive between
the pairs of test suites. Whereas, Figure 26 illustrates
theoverlaps and differences between alivemutants of
each test suite.

Theresultsshow that CT-generated test suitespro-
vide the highest mutation scores by detecting 90% of
the mutants when using 3-ways and 4-ways interac-
tion strength while requiring 1140 and 1680 seconds
asan averageexecution timeper mutant, respectively.
In contrast, CT 2-ways, manual, and MBT achieved
82%, 86%, and 88% mutation scoresrespectively, and
780, 600, and 2760 secondsof averageexecution time
per mutant, respectively. Moreover, thenumber of un-
detected mutants in manual, CT 2-ways, CT 3-ways,
CT 4-ways, and MBT were 7, 9, 5, 5, and 6, respec-
tively. We observed that MBT generated the highest
number of test cases in a test suite and required the
highest execution time, on average per mutant, but
still provided a slightly low mutation score than 3-
waysand 4-waystesting strategy. In addition, wealso

5The mutants that do not change the program behavior.
6The Venn diagram is created in an online tool ‘Meta-

Chart’ https://www.meta-chart.com/venn#/data

Figure 2: Venn diagram representing the overlaps and dif-
ferences between alive mutants.

examined the test verdicts of the MBT-generated test
suite and found that, due to duplicate test cases in the
MBT-generated test suite, if a test case in the MBT-
generated test suite detects a fault, its identical test
case(s) also show the presence of the fault in the mu-
tated program. In our industrial context, each failed
test step in a test case requires a maximum waiting
time for a signal response specified in the require-
ments. Similarly, in the case of other test suites, the
number of test cases detecting a mutant and the wait-
ing time for asignal response haveasignificant effect
on theexecution time. However, thenumber of MBT-
generated test cases in a test suite can be minimized
by removing these identical test cases, which conse-
quently will reduce the execution time too.

Theanalysis of thedatashown in Table2 and Fig-
ure 2 suggests an similar number of killed mutants
whereas only 4 common alive mutants were found
among all the test suites. We have also examined
these alive mutants and observed that 2 out of these
4 mutants were affecting a part of the code that could
not be invoked by the generated test cases’ inputs and
requires inputs from another subsystem upon integra-
tion. However, test suites developed using Manual, 2-
ways, 3-ways, 4-ways, and MBT left 3, 5, 1, 1, and 2
mutants alive, respectively7. Hence, all the test suites
achieved a reasonably high level of mutation scores,
within the range of 82% to 90%. However, the test
suites generated by CT 3-ways and 4-ways provided
higher fault detection rates than the test suites gener-
ated by other testing techniques. Moreover, each tech-
nique missed the generation of some signal combina-
tions that could be used to achieve a mutation score
of 100%. However, we still found manual testing as a
better-performing technique in terms of average exe-

7Some of these are unique across all the test suites,
while some have overlaps among only a subset of the test
suites.
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of test cases in a test suite and required the highest execution time, on average per mutant, but still provided 

a slightly low mutation score than 3- ways and 4-ways testing strategy. In addition, we also examined the test 

verdicts of the MBT-generated test suite and found that, due to duplicate test cases in the MBT-generated 

test suite, if a test case in the MBT- generated test suite detects a fault, its identical test case(s) also show the 

presence of the fault in the mutated program. In our industrial context, each failed test step in a test case 

requires a maximum waiting time for a signal response specified in the requirements. Similarly, in the case of 

other test suites, the number of test cases detecting a mutant and the waiting time for a signal response have 

a significant effect on the execution time. However, the number of MBT- generated test cases in a test suite 

can be minimized by removing these identical test cases, which consequently will reduce the execution time 

too.  

The analysis of the data shown in Table 17 suggests a similar number of killed mutants whereas only 4 common 

alive mutants were found among all the test suites. We have also examined these alive mutants and observed 

that 2 out of these 4 mutants were affecting a part of the code that could not be invoked by the generated 

test cases’ inputs and requires inputs from another subsystem upon integration. However, test suites 

developed using Manual, 2- ways, 3-ways, 4-ways, and MBT left 3, 5, 1, 1, and 2 mutants alive, respectively. 

Hence, all the test suites achieved a reasonably high level of mutation scores, within the range of 82% to 90%. 

However, the test suites generated by CT 3-ways and 4-ways provided higher fault detection rates than the 

test suites generated by other testing techniques. Moreover, each technique missed the generation of some 

signal combinations that could be used to achieve a mutation score of 100%. However, we still found manual 

testing as a better-performing technique in terms of average execution time per mutant while achieving a 

86% of mutation score. A summary of our observations regarding alive mutants across all test suites is as 

follows:  

• The total number of mutants not detected by manual testing, 2-ways, 3-ways, 4-ways, and MBT were 

7, 9, 5, 5, and 6, respectively. 4 of these alive mutants were common among all the test suites.  

• The manual test suite did not detect 3 alive mutants that were also included in the subset of alive 

mutants in CT 2-ways, whereas 1 mutant amongst the 3 was also not detected by the 2-ways and 4- 

ways generated test suites.  

• The use of CT 2-ways generated test suite did not detect 1 unique alive mutant which was killed by 

each of the other test suites.  

• CT 3-ways and 2-ways generated test suites had 1 alive mutant which was not killed by either of the 

test suites.  

• Lastly, 2 unique mutants were not detected by the MBT-generated test suite.  
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5.4.2 Sensitivity of Test Suites to Specific Mutation Operators 

To examine the type of faults prone to be detected by each test suite, we calculated the mutation scores as 

per each mutation operator. We also developed a bar graph based on the results to analyse the breakdown 

of mutation scores of each test suite as shown in Figure 31.  

 

Figure 31. Percentage of mutants killed by each test suite per operator. 

Figure 31 shows some meaningful implications based on the mutants killed by different test suites. All test 

suites detected each of the mutants injected by 3 out of 7 mutation operators i.e., LDO, LIO, and VRO, and 

provided 100% mutation scores for these mutation operators. On the other hand, none of the test suites 

detected any mutant induced in the original program based on the TRO mutation operator, consequently 

providing 0% mutation scores. In the case of LRO-I, all the test suites achieved 100% mutation scores except 

MBT, which achieved only 83%. For the NIO-based mutants, all the test suites achieved 86% mutation scores 

except 2-ways, which achieved 77%. Similarly, 3-ways, 4-ways, and MBT attained a similar mutation score of 

93% by detecting mutants injected based on LRO, whereas 2-ways and manual achieved 75% and 81%, 

respectively.  

Based on these results, we observe that for each mutation operator except TRO, each testing technique did 

not generate such combinations (i.e., combinations of inputs invoking the faulty area of the code affected by 

the alive mutant) that could be used to reach 100% mutation score. To detect TRO- based mutants, each test 

suite requires special test cases targeting the basic integrity (i.e., ensuring the starting states of the system) 

while entering a state within specified time, which can be used to vali- date the timing related requirements 

of the system. Hence, the results show that the CT 3-ways and 4- ways generated test suites are the most 

effective in detecting all types of faults except the faults related to TRO. MBT’s mutation score closely follows, 

where it achieved an equal mutation score in detecting all types of faults when compared to CT 3-ways and 

4-ways, except faults related to LRO-I. CT 2-ways- generated test suites are least effective in detecting NIO 

Table 1: Mutation score of each testing technique.

Techniques No. of Test Cases Mutants Killed (MK)% Mutants Alive (MA)% Mutation Score%

Manual 17 43 7 86

CT 2-ways 10 41 9 82

CT 3-ways 22 45 5 90

CT 4-ways 50 45 5 90

MBT 150 (39 after ex-
cluding identical
test cases)

44 6 88

Table 2: No. of common killed and alivemutants between the pairs of test suites.

Techniques CT 2-ways CT 3-ways CT 4-ways MBT
(MK / MA) (MK / MA) (MK / MA) (MK / MA)

Manual 41/7 42/4 43/5 41/4

CT 2-ways N/A 41/5 41/5 39/4

CT 3-ways - N/A 41/5 43/4

CT 4-ways - - N/A 43/4

cution time per mutant while achieving a86% of mu-
tation score. A summary of our observations regard-
ing alivemutants across all test suites is as follows:

• Thetotal number of mutants not detected by man-
ual testing, 2-ways, 3-ways, 4-ways, and MBT
were7, 9, 5, 5, and 6, respectively. 4 of thesealive
mutants were common among all the test suites.

• The manual test suite did not detect 3 alive mu-
tants that were also included in the subset of alive
mutants in CT 2-ways, whereas 1 mutant amongst
the 3 was also not detected by the 2-ways and 4-
ways generated test suites.

• The use of CT 2-ways generated test suite did not
detect 1 unique alive mutant which was killed by
each of the other test suites.

• CT 3-waysand 2-waysgenerated test suites had 1
alive mutant which was not killed by either of the
test suites.

• Lastly, 2 unique mutants were not detected by the
MBT-generated test suite.

4.2 RQ2: Sensitivity of Test Suites to

Specific Mutation Operators

To examine the type of faults prone to be detected by
each test suite, we calculated the mutation scores as
per each mutation operator. We also developed a bar
graph based on the results to analyze the breakdown
of mutation scores of each test suite as shown in Fig-
ure 3.

Figure 3 shows some meaningful implications
based on the mutants killed by different test suites.
All test suites detected each of the mutants injected

Figure3: Percentageof mutantskilled by each test suiteper
operator.

by 3 out of 7 mutation operators i.e., LDO, LIO, and
VRO, and provided 100% mutation scores for these
mutation operators. On the other hand, none of the
test suites detected any mutant induced in theoriginal
program based on the TRO mutation operator, con-
sequently providing 0% mutation scores. In the case
of LRO-I, all the test suites achieved 100% mutation
scores except MBT, which achieved only 83%. For
the NIO-based mutants, all the test suites achieved
86% mutation scores except 2-ways, which achieved
77%. Similarly, 3-ways, 4-ways, and MBT attained
asimilar mutation score of 93% by detecting mutants
injected based on LRO, whereas 2-ways and manual
achieved 75% and 81%, respectively.

Based on these results, we observe that for each
mutation operator except TRO, each testing technique
did not generate such combinations (i.e. combina-
tions of inputs invoking the faulty area of the code
affected by the alive mutant) that could be used to
reach 100% mutation score. In order to detect TRO-
based mutants, each test suite requires special test
cases targeting the basic integrity (i.e., ensuring the
starting states of the system) while entering a state
within specified time, which can be used to vali-
date the timing related requirements of the system.
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and LRO-based mutants due to the generation of a smaller number of input combinations having lower 

interaction strength.  

5.4.3 Relationship Between MC/DC Coverage and Mutation Score 

Figure 32 presents the mutation score and MC/DC coverage of each test suite. It shows that the MBT- 

generated test suite provided the highest MC/DC coverage, i.e., 88%. The test suites developed using CT 2-

ways, 3-ways, 4-ways, and manual testing techniques provided 59%, 76%, 80%, and 79% of MC/DC coverage 

respectively. The test suite generated by MBT provided an equal mutation score as its MC/DC coverage, 

whereas manual, 2-ways, 3-ways, and 4- ways generated test suites provided higher mutation scores as 

compared to the MC/DC coverage achieved by the respective test suites. We also observed that the 

differences between the mutation scores and MC/DC coverage in 2-ways and 3-ways generated test suites 

were greater than for the test suites generated by 4- ways and manual testing. Moreover, regardless of its 

high MC/DC, MBT shows a slightly lower mutation rate when compared with CT 3-ways and 4-ways 

techniques. 

 

Figure 32. Mutation score and MC/DC of each test suite in percentage. 

To thoroughly analyse the relationship between MC/DC coverage and mutation scores, we examined the 

breakdown of MC/DC coverage achieved by each test suite according to the selected parameters as shown 

in Figure 33, the SUT, as well as the killed and alive mutants. The analysis showed that if a system shares two 

or more similar requirements, then one FBD program can be used to generate two instances of the code. 

Therefore, each mutant induced at the FBD level can affect different areas of the code (i.e., induce more than 

one fault) and it may be possible that test suites with lower MC/DC cannot detect each fault induced per 

mutant. Similarly in our case, a fault induced at the FBD level affected the behaviour of the selected program 

at the system level where the combi- nations of input signals have a significant effect on the output of the 

system. Hence, the test suites developed using CT with higher interaction strength i.e., 3-ways and 4-ways 

and manual testing techniques contained such combinations, which were required to achieve an adequate 

Figure 4: Mutation score and MC/DC of each test suite in
percentage.

Hence, the results show that the CT 3-ways and 4-
ways generated test suites are the most effective in
detecting all typesof faultsexcept the faults related to
TRO. MBT’s mutation score closely follows, where
it achieved an equal mutation score in detecting all
types of faults when compared to CT 3-ways and
4-ways, except faults related to LRO-I. CT 2-ways-
generated test suites are least effective in detecting
NIO and LRO-based mutants due to the generation
of less number of input combinations having lower
interaction strength.

4.3 RQ3: Relationship Between MC/DC

Coverage and Mutation Score

Figure4 presents themutation scoreand MC/DC cov-
erage of each test suite. It shows that the MBT-
generated test suiteprovided thehighest MC/DC cov-
erage, i.e., 88%. The test suites developed using CT
2-ways, 3-ways, 4-ways, and manual testing tech-
niquesprovided 59%, 76%, 80%, and 79% of MC/DC
coverage respectively. The test suite generated by
MBT provided an equal mutation scoreas itsMC/DC
coverage, whereas manual, 2-ways, 3-ways, and 4-
ways generated test suites provided higher mutation
scores as compared to the MC/DC coverage achieved
by therespectivetest suites. Wealso observed that the
differences between the mutation scores and MC/DC
coverage in 2-ways and 3-ways generated test suites
were greater than for the test suites generated by 4-
ways and manual testing. Moreover, regardless of
its high MC/DC, MBT shows a slightly lower muta-
tion rate when compared with CT 3-ways and 4-ways
techniques.

To thoroughly analyze the relationship between
MC/DC coverage and mutation scores, we exam-
ined the breakdown of MC/DC coverage achieved by
each test suite according to the selected parameters
as shown in Figure 5, the SUT, as well as the killed
and alive mutants. The analysis showed that if a sys-
temsharestwoor moresimilar requirements, then one
FBD program can be used to generate two instances
of the code. Therefore, each mutant induced at the
FBD level can affect different areas of the code (i.e.

Figure 5: Breakdown of MC/DC according to selected pa-
rameters.

induce more than one fault) and it may be possible
that test suiteswith lower MC/DC can not detect each
fault induced per mutant. Similarly in our case, afault
induced at the FBD level affected the behavior of the
selected program at thesystem level wherethecombi-
nationsof input signalshaveasignificant effect on the
output of thesystem. Hence, the test suites developed
using CT with higher interaction strength i.e., 3-ways
and 4-ways and manual testing techniques contained
such combinations, which wererequired to achievean
adequatemutation scoreat thesystem level. Whereas,
MBT hasprovided higher MC/DC coverageby gener-
ating such test cases, especially targeting the MC/DC
parameter ‘coverage of all the conditions having an
independent effect on adecision at least once’ , where
other techniques gave relatively lower coverage per-
centages. Based on the graphs presented in Figure 4
and Figure 5, we also observed a generally positive
relationship between MC/DC coverage and mutation
score and argue that test suites achieving an adequate
level of MC/DC coverage also provide higher muta-
tion scores.

5 DISCUSSION

Weseefrom our results that ahigh fault detection rate
can be achieved using the higher interaction strength
of CT. Results are similar to some previous studies,
e.g., (Bures and Ahmed, 2017), (Petke et al., 2013).
However, CT has an increasing cost of completing
the test suite with expected outputs and timing con-
straints according to the system requirements. On
the other hand, MBT generated a complete set of test
suites containing inputs, expected outputs, and tim-
ing constraints from the model conforming to system
requirements while achieving an 88% fault detection
rate. Moreover, wealso found theMBT-generated test
suite iscomplete (i.e., contained expected output, and
timing constraints) and ready to be executed as well
as similar to specification-based manual testing used
in the industry.

The analysis of different mutant operators illus-
trates that all the test suites do not detect faults re-
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mutation score at the system level. Whereas, MBT has provided higher MC/DC coverage by generating such 

test cases, especially targeting the MC/DC parameter ‘coverage of all the conditions having an independent 

effect on a decision at least once’, where other techniques gave relatively lower coverage per- centages. 

Based on the graphs presented in Figure 32 and Figure 33, we also observed a generally positive relationship 

between MC/DC coverage and mutation score and argue that test suites achieving an adequate level of 

MC/DC coverage also provide higher mutation scores.  

 

Figure 33. Breakdown of MC/DC according to selected parameters. 

5.5 Results Regarding the Practical Implications of Adopting Passive Testing using T-EARS 

and the Accompanying Toolchain 

The results of this investigation are presented in three phases: Phase I - Gold Standard and Requirements 

Selection, Phase II - Process Adoption, and finally, Phase III Final Evaluation. 

5.5.1 Phase I – Gold Standard and Requirements Selection 

The first phase aims to identify a set of automated test cases to use as a reference gold standard when 

translating a subset of the requirements to G/As and a set of requirements to translate. We identified 14 

automated regression test cases from the Drive-and-Brake Functions, fulfilling our criteria on automation, 

observability, and priority by the case organization. The tested requirements were selected for translation, 

while the final evaluation is done over 116 SAFE requirements from the overall TCMS system.  

The translation process [20] we earlier outlined is used as a starting point and framework for structuring the 

results. Further, since one of the potential drawbacks of the method is the risk of false positives [22], we use 

a subset of the regression test log files from a well-tested system as a gold standard. Sixteen of the tested 

requirements were translated and tuned until all false positives were removed, and no remaining problems 

Figure 4: Mutation score and MC/DC of each test suite in
percentage.

Hence, the results show that the CT 3-ways and 4-
ways generated test suites are the most effective in
detecting all typesof faultsexcept thefaults related to
TRO. MBT’s mutation score closely follows, where
it achieved an equal mutation score in detecting all
types of faults when compared to CT 3-ways and
4-ways, except faults related to LRO-I. CT 2-ways-
generated test suites are least effective in detecting
NIO and LRO-based mutants due to the generation
of less number of input combinations having lower
interaction strength.

4.3 RQ3: Relationship Between MC/DC

Coverage and Mutation Score

Figure4 presents themutation scoreand MC/DC cov-
erage of each test suite. It shows that the MBT-
generated test suiteprovided thehighest MC/DC cov-
erage, i.e., 88%. The test suites developed using CT
2-ways, 3-ways, 4-ways, and manual testing tech-
niquesprovided 59%, 76%, 80%, and 79% of MC/DC
coverage respectively. The test suite generated by
MBT provided an equal mutation score as its MC/DC
coverage, whereas manual, 2-ways, 3-ways, and 4-
ways generated test suites provided higher mutation
scores as compared to the MC/DC coverage achieved
by therespectivetest suites. Wealso observed that the
differences between the mutation scores and MC/DC
coverage in 2-ways and 3-ways generated test suites
were greater than for the test suites generated by 4-
ways and manual testing. Moreover, regardless of
its high MC/DC, MBT shows a slightly lower muta-
tion rate when compared with CT 3-ways and 4-ways
techniques.

To thoroughly analyze the relationship between
MC/DC coverage and mutation scores, we exam-
ined the breakdown of MC/DC coverage achieved by
each test suite according to the selected parameters
as shown in Figure 5, the SUT, as well as the killed
and alive mutants. The analysis showed that if a sys-
tem sharestwoor moresimilar requirements, then one
FBD program can be used to generate two instances
of the code. Therefore, each mutant induced at the
FBD level can affect different areas of the code (i.e.

Figure 5: Breakdown of MC/DC according to selected pa-
rameters.

induce more than one fault) and it may be possible
that test suites with lower MC/DC can not detect each
fault induced per mutant. Similarly in our case, afault
induced at the FBD level affected the behavior of the
selected program at thesystem level wherethecombi-
nationsof input signalshaveasignificant effect on the
output of thesystem. Hence, the test suites developed
using CT with higher interaction strength i.e., 3-ways
and 4-ways and manual testing techniques contained
such combinations, which wererequired to achievean
adequatemutation scoreat thesystem level. Whereas,
MBT hasprovided higher MC/DC coverageby gener-
ating such test cases, especially targeting the MC/DC
parameter ‘coverage of all the conditions having an
independent effect on adecision at least once’ , where
other techniques gave relatively lower coverage per-
centages. Based on the graphs presented in Figure 4
and Figure 5, we also observed a generally positive
relationship between MC/DC coverage and mutation
score and argue that test suites achieving an adequate
level of MC/DC coverage also provide higher muta-
tion scores.

5 DISCUSSION

Weseefrom our results that ahigh fault detection rate
can be achieved using the higher interaction strength
of CT. Results are similar to some previous studies,
e.g., (Bures and Ahmed, 2017), (Petke et al., 2013).
However, CT has an increasing cost of completing
the test suite with expected outputs and timing con-
straints according to the system requirements. On
the other hand, MBT generated a complete set of test
suites containing inputs, expected outputs, and tim-
ing constraints from the model conforming to system
requirements while achieving an 88% fault detection
rate. Moreover, wealso found theMBT-generated test
suite iscomplete (i.e., contained expected output, and
timing constraints) and ready to be executed as well
as similar to specification-based manual testing used
in the industry.

The analysis of different mutant operators illus-
trates that all the test suites do not detect faults re-
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were left unresolved. We then analysed each challenge and possible solution and formed a generalized 

workflow.  

5.5.2 Phase II – Requirement Analysis Results 

Given the choice of the Drive-and-Brake Functions, the expected result of this activity is the set of requirements 

concerning the Drive-and-Brake Functions, dependencies, and a list of logical signals. Typically, these logical 

signals result from the harmonization activity [20]. However, using logical signals already in the requirements 

is common in safety-related requirements. Such standardization radically reduced effort in the later steps of 

the translation process. We argue that writing requirements this way is worthwhile on non- safe requirements 

as well. Besides speeding up the translation work, using logical signals disconnects the passive test cases from 

a particular release of the system, which was imperative since signals tend to be frequently reallocated 

between data buses or modules, especially in early releases. Finally, since the list of used signals is known at 

an early stage, the implementation analysis can start in parallel, so logging of the required signals can be 

done early, which ultimately reduces the time spent in the concretization step. The ability to transparently 

observe this mapping while translating the requirement was beneficial since the test engineer is more 

confident in the technical signals’ meaning.  

For requirements that contain more complex expressions such as sequence, many signals, or negated logical 

expressions, we can manually create examples signals to facilitate the next step, namely the Abstract G/A 

Construction. Due to observability limitations in the testing framework available to us, we selected 16 of the 

identified Drive-and-Brake requirements for translation. In parallel with this step, parts of the Implementation 

Analysis and Concretization were performed. In short, the required technical signals were identified and added 

to the regression test cases to create the gold standard log files. Further, the mapping from logical to technical 

signals was prepared.  

Throughout the upcoming sections, we use these logs to show the progression from a drafted G/A to a tuned 

G/A with a minimum of false positives.  

5.5.3 Phase II – Abstract G/A Construction Results 

The expected outcome from this step is a G/A that is complete with respect to its logical guard and assertion 

expressions but using logical signals. The main steps in this activity are [20] a) Language Harmonization, b) 

Extraction Of G/A information, c) Pattern Selection, and d) Abstract G/A Formalization. Since (a) and (b) steps 

are already given by the semi-formal notation of the requirement, we focus on (c) and (d) steps.  

One observed challenge is the case when there are alternative states for the guard (from any cab in the train), 

which in this case is cab A1 or cab A2. We observed that, when possible, splitting the passive test into one 

G/A for each OR expression allows a more fine-grained test, e.g., allowing each cab to be tested separately. 
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Further, when the validity of a signal S (i.e., S and valid_S) is important to test, (S or not(valid_S) could be used 

to create two tests as previously mentioned. 

Listing 1 shows how the G/A at Line 2-7 can be split into one G/A for each cab. The example requirement did 

not contain any timing information. We note here that it is not always possible to have precise timing 

information for each requirement at this level. Often such timing behaviour is described in separate non-

functional requirements covering one or more functional requirements. Even if a requirement contains 

sufficient timing information, valuable information can be obtained by observing the results of a G/A without 

timing specifications added.  

 

Listing 1. Abstract G/A 

Each requirement was translated to one or more G/As using the requirements’ INPUT/OUTPUT sections and 

the list of logical signals. No timing information was specified yet. Where necessary, we will add timing to the 

G/As during the upcoming tuning session. The G/As were evaluated on the set of gold standard log files, and 

the result is presented in Figure 34. The rows show the G/As are named according to the requirement (e.g., 

REQ-245) to maintain traceability. Some requirements result in more than one G/A. We use a suffix for those 

G/As (e.g., -A1, -A2 to denote testing Cab A1 and Cab A2, respectively). For each TC-G/A combination, a P, 

F, or - denotes passed, failed or not-activated, respectively. For each log, the tested requirements (G/As) are 

marked with a bracket. For example, TC-001 tests requirement number 259. The corresponding G/A REQ-259 

is thus expected to be activated (and passed). Since all logs stem from passed regression test cases of a well-

tested system, we expect all such cells with a bracket to carry a [P]. However, without any adaptation, it turned 

out that a) conditions for all expected G/A were not present in the test data set ([-]) and b) several G/A failed, 

although the test data was expected to show passed ([F]), and c) some G/A failed in all test runs (F). In our 

case, any fails or ([-]) are false positives since we use reliable logs from a well-tested system.  



ADEPTNESS – 871319  PU 
D7.2 – Report on the Results of the Cost-Benefit Assessment 
 

 Adeptness – 871319   66 

   

 

Figure 34. Initial Translation evaluated over a set of passed logs. 

5.5.4 Phase II – Implementation Analysis Results 

This step’s expected outcome is a mapping between the abstract (logical) signals and the concrete (technical) 

signals that can be used for directly evaluating the abstract G/As. We performed this step concurrently with 

the requirement analysis step to facilitate the translation. 

This step’s most significant challenges concern consistency, technical signal identification, observability, 

maintenance, and signal scoping. In an initial attempt, as a preparation for this case study using other 

requirements without standardized logical signals, the mapping consistency quickly eroded into 

multiple/duplicate definitions and resulted in constant updates of the automated test cases to obtain the 

required signals logged. Identifying the correct signal among the tens of thousands available was another 

challenge aside from the experienced observability issues. Some requirements include non-observable 

internal signals. Often, other signals could be used as a proxy. The challenge is to understand how the non-

observable signal affects the observable signal. The next challenge is maintaining the mappings when the 

implementation changes, such as an updated source, emitting the signal. Lastly, there are always more signals 

available in the general case than it is possible to log. For a practical application of passive testing, this has a 

significant impact on the method’s usefulness. If a single signal is missing, a whole passive test case is rendered 

useless and will not even evaluate, resulting in a potential false positive. Further, for each set of signals to log, 

all the test cases need to be executed. Keeping track of the log-sets by hand was tedious and error-prone.  

 In the upcoming paragraphs, we present identified solutions to these challenges. Firstly, having a 

standardized set of logical signals used for all (at least a relevant subset) requirements is critical for consistency. 

Listing 2 shows examples of the outcome of this step using this strategy.  
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Listing 2. Partially Obfuscated Signal Definitions 

Further, Lines 2-3 and 4-5 show a low-level separation of logical signals and their binding to a particular 

implementation. Such low-level separation allows for automating the logical to technical signal mapping, 

contributing to solving the maintenance challenge. In the example, the logical signals gradually increase the 

abstraction level (Line 7 and finally, Lines 12-16). The “final” signal on Line 12-16 is the “standardized” logical 

signal used. Theoretically, it would be possible to use the logical names in the INPUT/OUTPUT section as-is, 

but the presence of white-space and the slight variations (e.g., CCU IP OUT / OUT CCU IP) are deemed to 

produce hard to find errors. Hence, the T-EARS name was created by replacing white-space with an 

underscore, reformatting the IN/OUT and BUS info to the same order everywhere. While translating, the tester 

copy/pastes the logical signal’s natural language name into a search view and gets the closest matching T-

EARS names. The above method had a substantial impact on the translation effort.  

In the case study, we identified two approaches for increasing the logging-efficiency and possibly reducing 

the scoping challenge. The first approach concerns telegrams where each bit corresponds to a digital signal. 

Depending on the logging framework, logging the telegram rather than the individual signals may drastically 

increase the number of logged signals. If the logged telegram is a 16-bit integer, we can log the entire 

telegram and let T-EARS mask out the individual signals using the bitmask function. Such a mapping can 

typically be automated using a template, as shown in Listing 3.  

 

Listing 3. Tricks For Increasing Log Information 
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Using the T-EARS select and exists, the validity signal of fail-safe signals can be made optional, as shown in 

Line 6-9 in Listing 3. The defined signal is equal to the validity signal if it is logged or always true if it is not 

logged. Using optional validity signals only works on fail-safe signals with a guaranteed fail state whenever 

the validity signal is false.  

5.5.5 Phase II – Concretization Results 

The concretization step’s expected outcome is a G/A evaluated using concrete (technical) signals. Given our 

suggestions for the implementation step, this is accomplished by specifying the signal mapping. We did not 

observe any challenges in this step.  

5.5.6 Phase II – Tuning and Validation Results 

This step’s expected result is an executable and complete G/A with a minimum of false positives. A G/A is 

considered complete when there are no unknown dependencies that would cause a wrong verdict. A fictitious 

example is a G/A only checking that the brake light is turned off when lifting the brake pedal, but another 

subsystem issues a brake order that causes the test to fail. False positives include such conditions and G/As 

are not being activated when supposed to or failing where there is no underlying fault. In this step, the tester 

logs required signals while operating the system to activate the G/A. Eliminating false positives turned out to 

be the most challenging part of the entire process. To find out how to do this systematically, we tuned our 

G/As against our gold standard until no more false positives were encountered. The result is presented as a 

systematic process containing the steps outlined in the following sub-sections.  

5.5.6.1 Validating Guard Activation 

The expected outcome of this step is a guard that is activated when expected and not activated when not 

expected. In the general case, the tester operates the system (while logging the appropriate signals) until she 

knows that the system state is correct. For our gold standard, we already know which G/A should be active 

for each log. Thus, this step’s expected outcome is that each G/A is activated at least once for the logs testing 

the G/As requirement. Such expected activations are marked with brackets in Figure 34. G/A activations for 

other logs are not necessary but welcome if they do not produce false positives. Notably the REQ-456-A2 in 

Figure 34 has not been activated when expected.  

We identified possible sources of missing activation(s), including input stimuli sequence, log, signal mapping, 

and requirement. The first source, input stimuli sequence, is the easiest to investigate. Examining the test case 

actions should reveal if the test does not put the system in a testable state (as it should have). In our case, we 

know that the logs are correct, so the cause of the missing activation of TC-068 and REQ- 456-A2 in Figure 

34 must be related to some other reason. If the evaluation completely fails for one log but looks fine for 

another, the log probably lacks one or more signals. Another reason for not activating (or giving a faulty 
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evaluation) may be that a signal is captured with the right name but with the wrong values. This may happen 

if the test framework injects faults or alter signals for testing purposes. Another common mistake is that a 

logical signal is defined with the wrong technical signal (e.g., a logical signal from cab A1 and cab A2 are 

mapped to the same technical signal by mistake). In this study, we experienced all the above, mostly due to 

a lack of proper automation of these tasks. The last category, requirement, includes reasons such as the 

requirement lack of information to capture the testable state, or the requirement text is misunderstood. It may 

also be missing signals or unknown dependencies as in the example of the brake pedal. In our example, it 

turned out that REQ-456- A2 suffered from misunderstandings of the requirement text. Updating the 

conditions of the guards activated the G/A for TC-017 and TC-068, as seen in Figure 35. This also shows that 

the G/A still fails for TC-068 and more tuning is required for the G/A.  

 

Figure 35. Activation and Start-up (ignore) Tuned 

5.5.6.2 Systematic Issues 

This step is applicable if there exists a set of logs and a suspicion that the false positives are due to some 

systematic disturbance. One such observed systematic disturbance was identified at the beginning of most 

log files. Such turbulence may occur in some signals when starting up and tearing down the environment. 

This is especially true for simulated environments and may generate enormous amounts of false fail 

indications. However, cutting the log in either end is not without risks, especially when a passive test case 

relies on a sequence to occur or complete. Even trivial sequences like a button toggle may wreck the entire 

evaluation of a passive test case, e.g., if the first press in the log file is ignored, so this activity must be done 

in the context of each passive test case.  

To investigate whether false positives stem from such start-up problems, we need to bring up a detailed 

evaluation view over several logs, preferably from different testing sessions.  
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Figure 36 illustrates such a view for spotting systematic fails. The figure shows the evaluation of the G/A REQ-

281 over six logs. Each sub-figure shows the evaluation over the corresponding log file. The plots in each sub-

figure show the guard passes and fails as binary signals. The grey signal at the bottom (guard interval) goes 

high whenever the system is in a state where the requirement should be validated. The (red) signal in the 

middle graphs goes high whenever the requirement is not met during the guard interval (fail). Similarly, the 

topmost (green) signal goes high, where the requirement is met (pass).  

 

Figure 36. Systematic Fail Analysis, REQ-281 

Focusing on the very first part of each log evaluation, we observe a fail at the very beginning of each 

evaluation for REQ-281. Further, the fail interval is too long to be explained by natural latencies or sampling 

effects in the system. According to our domain expert, this requirement was sensitive to some start-up 

adjustments in the simulator. In this study, only 4 out of 17 passive test cases were susceptive to such start-up 

disturbances, emphasizing the recommendation against a default ignore. For those four test cases, we ignored 

the first 32 seconds using the keyword ignore, as shown at line 2 in Listing 4.  

 

Listing 4. Example G/A With Timing Specifications 

Fig. 5: Systematic Fail Analysis, REQ-281

over six logs3. Each sub-figure shows the evaluation over the

corresponding log file. The plots in each sub-figure show the

guard passes, and fails as binary signals. The gray signal at

the bottom (guard interval) goes high whenever the system

is in a state where the requirement should be validated.

The (red) signal in the middle graphs goes high whenever

the requirement is not met during the guard interval (fail).

Similarly, the topmost (green) signal goes high, where the

requirement is met (pass).

Focusing on the very first part of each log evaluation,

we observe a fail at the very beginning of each evaluation

for REQ-281. Further, the fail interval is too long to be

explained by natural latencies or sampling effects in the

system. According to our domain expert, this requirement was

sensitive to some startup adjustments in the simulator. In this

study, only 4 out of 17 passive test cases were susceptive to

such startup disturbances, emphasizing the recommendation

against a default ignore. For those four test cases, we ignored

the first 32 seconds using the keyword i gnor e, as shown at

line 2 in Listing 7.

1 / / Tuni ng f or Si mul at ed Ri g
2 i gnor e < 0s
3 al l ow 500ms f ai l
4 const TI MEOUT = 500ms
5 / / . . .
6 ’ REQ- 456- A2’ =
7 whi l e Cab_door s_cl osed_and_l ocked_i n_cab_A2 == f al se

and
8 St andst i l l == t r ue
9 and

10 Bypass_act i ve_i n_r eady_t o_r un == t r ue
11 shal l
12 Tr act i on_saf e_command == f al se
13 and
14 bi t mask ( CabDr Op,
15 MWT_t r act i on_bl ock_r eason) == CabDr Op
16 and
17 Al l ow_t r act i on == f al se
18 wi t hi n TI MEOUT
19 / / . . .

Listing 7: Example G/A With Timing Specifications

This removed all confirmed false4-positives during startup.

However, still, many passive test cases failed while they should

pass. The result of this tuning step is presented in Figure 4.

3We could fit six logs into the paper figure. For real, it may be beneficial
to analyze more logs.

4All fails were confirmed to be false positives.
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REQ-254 - - [P] - - - - - - - - - - -
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REQ-258 [P] - - - - - - - - - - - - -

REQ-259 [P] - - - - - - - - - - - - -

REQ-260 - - - - [P] - - - - - - - - -

REQ-281 P P P P P P - - - - - [P] P -

REQ-283 - - - - - - - - - [P] - - - -

REQ-290-A1 - - - - - - - - - - [P] - - -

REQ-290-A2 - - - - - - - - - - [P] - - -

REQ-349 P P P P P [P] P P P P P P P P

REQ-350 - - - [P] - - - - - - - - - -

REQ-456-A1 - - - - - - - F - - - - P [F]

REQ-456-A2 - - - - - - - P - - - - - [F]

Fig. 7: Assertion Latency (wi t hi n) Tuned

3) Latencies and Sampling Effects on Assertions: Aside

from the startup turbulence, one distinct type of false fail,

observed in the study, is shown in Figure 6 at approximately

300s. In the example, the guard starts with a very short fail

period but then passes until the end of the guard period5.

A typical example in this study is REQ-245; when the doors

are open, a start-inhibit signal should be set. According to our

observations, when the doors are open, it takes a (short) while

until the start-inhibit signal is set. Even though the requirement

contains timing information, using G/As to explore assertion

latencies, together with proper domain knowledge, allows

establishing better, worst, and acceptable latency margins. Fur-

ther, some safety-related signals are only indirectly observable

at the system level, which adds to the specified timing in the

requirement. The tester needs to judge whether the latencies

are reasonable or not, a process that would be facilitated

by such a tool. Although we call it assertion latency, other

probable sources of such delays include sampling issues or

different time-domain effects (e.g., A machine is used to

simulate parts of the system and a real-time simulator other

parts).

A tool that discovers harmless assertion latencies needs to

make sure that the fail starts simultaneously as the guard and

that it is followed by a substantially larger pass period to

rule out other, potentially severe fails. Confirmed harmless

assertion latencies can be ignored by adding the wi t hi n, as

5Except for a possible guard latency as described in the next section.
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This removed all confirmed false positives during start-up. However, still, many passive test cases failed while 

they should pass. 

5.5.6.3 Latencies and Sampling Effects on Assertions 

Aside from the start-up turbulence, one distinct type of false fail, observed in the study, is shown in Figure 37 

at approximately 300s. In the example, the guard starts with a very short fail period but then passes until the 

end of the guard period.  

 

Figure 37. Example of Natural Latency Fails of a (Should-Be) Passing G/A. 

A typical example in this study is REQ-245; when the doors are open, a start-inhibit signal should be set. 

According to our observations, when the doors are open, it takes a (short) while until the start-inhibit signal 

is set. Even though the requirement contains timing information, using G/As to explore assertion latencies, 

together with proper domain knowledge, allows establishing better, worst, and acceptable latency margins. 

Further, some safety-related signals are only indirectly observable at the system level, which adds to the 

specified timing in the requirement. The tester needs to judge whether the latencies are reasonable or not, a 

process that would be facilitated by such a tool. Although we call it assertion latency, other probable sources 

of such delays include sampling issues or different time-domain effects (e.g., A machine is used to simulate 

parts of the system and a real-time simulator other parts).  

A tool that discovers harmless assertion latencies needs to make sure that the fail starts simultaneously as the 

guard and that it is followed by a substantially larger pass period to rule out other, potentially severe fails. 

Confirmed harmless assertion latencies can be ignored by adding the within, as demonstrated on line 18 in 

Listing 4, the passive test case ignores latencies fails up to the specified time limit (500ms). Although it is 

tempting to use a sizeable global time limit, this may conceal severe problems in the system. On the other 

hand, setting the within too narrow will give false fails due to variations in the active test case logs. The added 

within statements (between 200-500ms) solved all assertion latencies as defined above and shown in Figure 

38. REQ-254 and REQ- 456 are still failing.  
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Figure 38. Assertion Latency (within) Tuned 

5.5.6.4 Latencies and Sampling Effects on Guards 

Another distinct source of false positives observed in the study is exemplified in Figure 37 at approximately 

180s. The guard mostly passes but fails for a tiny part at the end of the guard interval. It appears as if the 

guard condition ended too late. This behaviour was observed in, e.g., REQ-245, where traction seems to be 

allowed just before the doors were closed and locked. Again, exploring fail intervals, together with proper 

domain knowledge, allows establishing an acceptable range for guard latencies. Although we call it guard-

latency for simplicity, there may be other sources of such delays as for the assertion latencies. A tool that 

automatically finds such fails would match all fail-intervals within a guard-interval, immediately preceded by 

a pass-interval and ending where the guard ends.  

Confirmed harmless guard-latencies can be ignored by adding the allow, as demonstrated at line 3 in Listing 

4. The keyword specifies to the G/A to ignore guard latencies up to a specified time limit like within, although 

it is tempting to use a sizeable global time limit, this may conceal severe problems in the system. On the other 

hand, setting the allow too narrow will give false fails due to variations in the active-test-case logs.  

In our case, the engineers concluded that the delays up to twice the sample time were acceptable. Given an 

analysis of the failing G/As, allow was added up to double the sampling time. The remaining test cases were 

left unchanged. The added slack addressed all remaining latency/sampling effect problems for all our G/A 

over the available log files, as presented in Figure 39.  

Fig. 5: Systematic Fail Analysis, REQ-281

over six logs3. Each sub-figure shows the evaluation over the

corresponding log file. The plots in each sub-figure show the

guard passes, and fails as binary signals. The gray signal at

the bottom (guard interval) goes high whenever the system

is in a state where the requirement should be validated.

The (red) signal in the middle graphs goes high whenever

the requirement is not met during the guard interval (fail).

Similarly, the topmost (green) signal goes high, where the

requirement is met (pass).

Focusing on the very first part of each log evaluation,

we observe a fail at the very beginning of each evaluation

for REQ-281. Further, the fail interval is too long to be

explained by natural latencies or sampling effects in the

system. According to our domain expert, this requirement was

sensitive to some startup adjustments in the simulator. In this

study, only 4 out of 17 passive test cases were susceptive to

such startup disturbances, emphasizing the recommendation

against a default ignore. For those four test cases, we ignored

the first 32 seconds using the keyword i gnor e, as shown at

line 2 in Listing 7.

1 / / Tuni ng f or Si mul at ed Ri g
2 i gnor e < 0s
3 al l ow 500ms f ai l
4 const TI MEOUT = 500ms
5 / / . . .
6 ’ REQ- 456- A2’ =
7 whi l e Cab_door s_cl osed_and_l ocked_i n_cab_A2 == f al se

and
8 St andst i l l == t r ue
9 and

10 Bypass_act i ve_i n_r eady_t o_r un == t r ue
11 shal l
12 Tr act i on_saf e_command == f al se
13 and
14 bi t mask( CabDr Op,
15 MWT_t r act i on_bl ock_r eason) == CabDr Op
16 and
17 Al l ow_t r act i on == f al se
18 wi t hi n TI MEOUT
19 / / . . .

Listing 7: Example G/A With Timing Specifications

This removed all confirmed false4-positives during startup.

However, still, many passive test cases failed while they should

pass. The result of this tuning step is presented in Figure 4.

3We could fit six logs into the paper figure. For real, it may be beneficial
to analyze more logs.

4All fails were confirmed to be false positives.
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REQ-456-A2 - - - - - - - P - - - - - [F]

Fig. 7: Assertion Latency (wi t hi n) Tuned

3) Latencies and Sampling Effects on Assertions: Aside

from the startup turbulence, one distinct type of false fail,

observed in the study, is shown in Figure 6 at approximately

300s. In the example, the guard starts with a very short fail

period but then passes until the end of the guard period5.

A typical example in this study is REQ-245; when the doors

are open, a start-inhibit signal should be set. According to our

observations, when the doors are open, it takes a (short) while

until the start-inhibit signal is set. Even though the requirement

contains timing information, using G/As to explore assertion

latencies, together with proper domain knowledge, allows

establishing better, worst, and acceptable latency margins. Fur-

ther, some safety-related signals are only indirectly observable

at the system level, which adds to the specified timing in the

requirement. The tester needs to judge whether the latencies

are reasonable or not, a process that would be facilitated

by such a tool. Although we call it assertion latency, other

probable sources of such delays include sampling issues or

different time-domain effects (e.g., A machine is used to

simulate parts of the system and a real-time simulator other

parts).

A tool that discovers harmless assertion latencies needs to

make sure that the fail starts simultaneously as the guard and

that it is followed by a substantially larger pass period to

rule out other, potentially severe fails. Confirmed harmless

assertion latencies can be ignored by adding the wi t hi n, as

5Except for a possible guard latency as described in the next section.
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Figure 39. Guard Latency (allow) Tuned 

5.5.6.5 Remaining Issues and Root Cause Analysis 

When all of the above standard procedures fail to explain a fail interval in a passive test case, the chances are 

that we are facing a real bug, unknown feature interaction, or insufficient/faulty requirement description. In 

either case, the remaining fails need to be examined closely. Figure 40 shows such a fail from an early stage 

in the translation process. In this case, the failure turned out to be a misinterpretation of the signal redundancy, 

which led to the use of an AND operator instead of an OR operator.  

 

Figure 40. Fail in test case that requires root cause analysis. 

5.5.7 Phase III – Final Evaluation 

The 116 SAFE requirements were examined and are estimated to be applicable for 74 of the 116 reviewed 

SAFE requirements, which is in line with a previous case study using an early prototype [22].  
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Fig. 8: Guard Latency (al l ow) Tuned

demonstrated on line 18 in Listing 7, the passive test case

ignores latencies fails up to the specified time limit (500ms).

Although it is tempting to use a sizeable global time limit,

this may conceal severe problems in the system. On the other

hand, setting the wi t hi n too narrow will give false fails due

to variations in the active test case logs. The added wi t hi n

statements (between 200-500ms) solved all assertion latencies

as defined above and shown in Figure 7. REQ-254 and REQ-

456 are still failing.

4) Latencies and Sampling Effects on Guards: Another

distinct source of false-positives observed in the study is

exemplified in Figure 6 at approximately 180s. The guard

mostly passes, but fails for a tiny part at the end of the guard

interval. It appears as if the guard condition ended too late.

This behavior was observed in, e.g., REQ-245, where traction

seems to be allowed just before the doors were closed and

locked. Again, exploring fail intervals, together with proper

domain knowledge, allows establishing an acceptable range

for guard latencies. Although we call it guard-latency for

simplicity, there may be other sources of such delays as for

the assertion latencies. A tool that automatically finds such

fails would match all fail-intervals within a guard-interval,

immediately preceded by a pass-interval and ending where

the guard ends.

Confirmed harmless guard-latencies can be ignored by

adding the al l ow, as demonstrated at line 3 in Listing 7.

The keyword specifies to the G/A to ignore guard latencies

up to a specified time limit similar to wi t hi n, although it is

tempting to use a sizeable global time limit, this may conceal

severe problems in the system. On the other hand, setting the

al l ow too narrow will give false fails due to variations in the

active-test-case logs.

In our particular case, the engineers concluded that the

delays up to twice the sample time were acceptable. Given an

analysis of the failing G/As, al l ow wasadded up to double the

sampling time. The remaining test cases were left unchanged.

The added slack addressed all remaining latency/sampling
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Fig. 9: Fail in test case that requires root cause analysis.

effect problems for all our G/A over the available log files,

as presented in Figure 8.
5) Remaining Issues and Root Cause Analysis: When all

of the above standard procedures fail to explain a fail interval

in a passive test case, the chances are that we are facing a

real bug, unknown feature interaction, or insufficient/faulty

requirement description. In either case, the remaining fails

need to be examined closely. Figure 9 shows such a fail from

an early stage in the translation process. In this case, the failure

turned out to be a misinterpretation of the signal redundancy,

which led to the use of an AND operator instead of an OR

operator.

G. Phase III - Final Evaluation

The 116 SAFE requirements were examined and are es-

timated to be applicable for 74 of the 116 reviewed SAFE

requirements, which is in line with a previous case study using

an early prototype [13].

In the remaining section, we show the results from two

logged manual sessions performed by an expert. The first

session is performed on a well-tested and released system

in a HIL-rig, as opposed to our gold standard produced in

a completely simulated environment. The expert tester’s goal

is to cover as much of the functionality during the session. The

purpose of the first session is to validate that the false positives

have been tuned away and demonstrate how passive test cases

can be used to understand requirement coverage. A fail for

the REQ-246 revealed that the timing was slightly different for

the HIL-rig signals compared to the simulator. After adding an

allowance of 250ms, the G/A passed. The results are presented

in Figure 10. Each row shows the evaluation of a G/A, as

translated in previous sections. A green “P” shows that the

G/A could be evaluated, did not fail, and passed at least once.

The “Evaluation Details” column show how many times the

G/A was activated (guard activations) and the total number

of fails and passes during the logged session. The gray “-

” denotes a G/A that could not be evaluated. In this case,

due to a missing signal. Having missing signals is a common

situation since there is often a restriction on how many and

which signals can be logged. Since the expert did not log

that signal, the corresponding G/As could not be evaluated.

However, the remaining G/As show that the achieved coverage

was at least 9 out of 18 G/As. Since this system was extremely

well tested, the absence of fails shows that the tuning has been

successful. A closer look at REQ-244 in Figure 10 reveals that

the requirement has been tested nine times during the session,

and REQ-281 six times.
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In the remaining section, we show the results from two logged manual sessions performed by an expert. The 

first session is performed on a well-tested and released system in a HIL-rig, as opposed to our gold standard 

produced in a completely simulated environment. The expert tester’s goal is to cover as much of the  

functionality during the session. The purpose of the first session is to validate that the false positives have 

been tuned away and demonstrate how passive test cases can be used to understand requirement coverage. 

A fail for the REQ-246 revealed that the timing was slightly different for the HIL-rig signals compared to the 

simulator. After adding an allowance of 250ms, the G/A passed. The results are presented in Figure 41. Each 

row shows the evaluation of a G/A, as translated in previous sections. A green “P” shows that the G/A could 

be evaluated, did not fail, and passed at least once. The “Evaluation Details” column show how many times 

the G/A was activated (guard activations) and the total number of fails and passes during the logged session. 

The grey “- ” denotes a G/A that could not be evaluated. In this case, due to a missing signal. Having missing 

signals is a common situation since there is often a restriction on how many and which signals can be logged. 

Since the expert did not log that signal, the corresponding G/As could not be evaluated. However, the 

remaining G/As show that the achieved coverage was at least 9 out of 18 G/As. Since this system was extremely 

well tested, the absence of fails shows that the tuning has been successful. A closer look at REQ-244 in Figure 

41 reveals that the requirement has been tested nine times during the session, and REQ-281 six times.  

 

Figure 41. Resulting G/As, Expert Session I (Well-Tested) 

In the second session, the test engineer injected two intermittent faults in the system that would be difficult 

to detect using traditional scripted testing. The result is presented in Figure 42. Again, a signal was not logged, 

so the grey “-” does not provide any information. There are, however, some yellow “-” (Guard never activated); 

a never activated guard means that the tester has not covered the corresponding requirement in the session, 

which was confirmed by the expert tester in this session. The red “F” shows where the G/A detected violations 

of the requirements. Analysis of the failed requirements (G/As) against the injected faults concluded that the 
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two faults affected the system in a way that make it violate exactly these four requirements (G/As) during the 

short time the faults were injected.  

 

Figure 42. Resulting G/As, Expert Session II (Fault-Injected) 

5.6 Analysis of the Results for O1 and O2 

The first objective O1 in Adeptness was set as: “To demonstrate an increment in software quality for CPSoS”. 

The second objective O2 in Adeptness was set as: “To demonstrate a reduction in the re-commissioning cost 

of software releases for CPSoS while guaranteeing its reliability”. 

The relevant solutions and figures that are developed and validated in the railway use case relevant for these 

objectives are mentioned below: 

• Automatic generation of test cases providing 100% edge coverage. 

• Automatic generation of test cases providing higher frequencies of requirements coverage than 

manually written test cases, the maximum requirements coverage frequencies vary in the range of 

26 to 84. In comparison, manually written test cases cover each requirement only once. 

• Automatic generation of test scripts that provide 100% requirements coverage.  
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• Validation of the correctness of the test scripts as no faults identified on the correct model, confirming 

the 100% correct generation and execution, ensuring conformance to the requirements specifications 

and the implemented SUT. 

• Validation of the correctness of the test scripts as faults identified with the faulty model. 

• Automatic generation of model-based test cases achieves highest median MC/DC coverage of 

90.27% in comparison with manual testing (79%) and 4-ways combinatorial testing (80%). 

• Automatic generation and execution of test scripts using model-based testing is more cost efficient 

in terms of time than manual testing, 27900 seconds (manual) vs. 20107 seconds (automatic). 

• Model-based testing generated the greatest number of unique test cases (9) in comparison with 

manual (2) and 4-ways combinatorial testing (3).  

• Automatically generated model-based test cases contained approximately 71% of similar test cases, 

on average, generated by manual and combinatorial testing.  

• Automatically generated model-based test cases achieve better mutation score (88%) as compared 

to manually written test cases (86%). 

• Automatically generated model-based test cases have a smaller number of alive mutants (6) than 

manually written test cases (7). 

• 100% mutation score achieved through continuous monitoring of the system under test using T-

EARS. 

The above results are in in line with internal Bombardier investigations on modelling and coverage 

enhancement. For modelling, an internal Bombardier investigation reveals that modelling leads to an 

increased identification of issues. This is shown in Figure 43 below, where the count of issues shows an 

increasing trend because of modelling of requirements. 
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Figure 43. Modelling of requirements leads to an increased count of issues. 

Similarly, internal Bombardier investigations also reveal that an increased test coverage is good surrogate 

measure for keeping the issue backlog smaller since a lot of issues are identified and solved quickly. So, the 

set of open and closed issues get smaller, which is a positive quality indicator. This is shown in Figure 44.  
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Figure 44. Bombardier’s analysis of issue backlog shows a declining trend in open and closed issues due to 

increased test coverage. 

The above two figures indicate that the results achieved in Adeptness are in line with Bombardier’s internal 

investigations. 

5.7 Analysis of the Results for O3 

The third objective O3 in Adeptness was set as: “To increase synergies and collaborations between sector-

leading companies and academic partners”.  

The relevant measures relevant for this objective are mentioned below: 

• Development of several tool prototypes to expedite collaboration with companies and academic 

partners. These tool prototypes include a test script execution framework, a cloud-based GUI for 

integrating deployment and testing processes and a toolchain based on passive testing.  

• Development of a workflow where several different technologies get integrated, belonging to 

deployment, testing, and monitoring.  

• Continuous dissemination of results in leading global conferences. 
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5.8 Discussion of the Results 

5.8.1 Discussion on the Results on Modelling Aspects, Behavioural Differences Between Test Cases 

and Initial Experience 

Requirements and test specifications help in understanding the behavioural aspects of the SUT in a better 

way. These documents not only provide information about the SUT but also cover the testers’ perspective, 

thus covering all scenarios meeting the test objectives.  

At our industrial partner, manually written test specification follow a sequential order to cover requirements. 

The test steps to cover the first requirement are written and executed first and engineers follow this order in 

a systematic way. Conversely, through GW when the random generator is selected, test cases are randomly 

generated. Hence, MBT-generated test cases can exploit the SUT through exploring different paths, increasing 

the chances of uncovering unknown faults and interesting interaction scenarios not possible through a 

sequential execution order of test steps.  

During GW test generation, we also tried with other avail- able path generators and stopping conditions but 

identified certain limitations. For this study, we only considered the path generator and stopping conditions 

that provide 100% requirements coverage as this is an important metric for BT at this level of testing. While 

using the quick_random path generator with different stopping conditions, we were unable to generate test 

cases because GW started traversing a specific path in a continuous loop, unless a threshold value was 

reached for the test steps, resulting in too many test cases with similar test steps. Weight_random path 

generator requires weight at each edge, which represents the probability of an event to happen; this 

information was not available in our industrial scenario, thus Weight_random path genera- tor was not used. 

Similarly, A_star path generator generates the test steps for a specified node or edge, hence is unable to 

provide 100% requirements coverage. Moreover, GW4E does not support the time_duration stopping 

condition, so we were unable to generate the test cases using this stop- ping condition. However, while 

experimenting, we found that the time provided as a parameter to time_duration stop- ping condition in 

GraphWalker studio can affect the number of generated test steps, model, and requirements coverage as 

well as frequency of requirements coverage. Similar effects were also observed using the length stopping 

condition as number of generated test steps depends on the value of length provided. A systematic 

experimentation to quantify the effects of such parameter changes is left as a future work.  

5.8.1.1 Broader Impact 

Here we discuss any potential negative impact of our research. The evidence regarding the prevailing use of 

MBT is rather limited. This is especially problematic if we consider relying on MBT for thoroughly testing 

industrial safety-critical systems (e.g., trains, cars, nu- clear power plants) where failures can lead to loss of 

human lives. Our aim is to provide aid to the testers in test case and test script generation, so that they can 

invest their time in more productive activities of investigating root cause analysis of bugs and to design better 



ADEPTNESS – 871319  PU 
D7.2 – Report on the Results of the Cost-Benefit Assessment 
 

 Adeptness – 871319   80 

   

testing scenarios, helping them to optimize relevant coverage criteria. The purpose is not to replace them. 

Moreover, MBT requires human effort, such as in creation of correct models and to correctly generate 

concrete test cases. Our results investigate the use of MBT and identify the empirical evidence for, or how to 

improve, the use of it in practice when testing industrial safety-critical systems. In addition, our results aim to 

pro- vide more evidence on how to improve the adoption and deployment of MBT in an industrial setting as 

well as how the resulting test cases can perform comparably with manual test design performed by industrial 

engineers.  

5.8.2 Discussion on the Results on Fault Injection Analysis to Evaluate TIGER-Generated Test Scripts 

We have used three different mutation operators to evaluate TIGER, however, we also tried with other 

mutation operators. These other mutation operators did not result in any different behaviour in our case. For 

example, we induced some faults based on ‘arc missing’, ‘output missing’, ‘event missing’, ‘destination 

exchanged’ and ‘event exchange’ operators. But event and destination exchange had similar effect on the 

model as output exchange. Similarly, output missing, event missing and arc missing showed no effect on the 

model, and induced faults based on these operators only resulted in less input combinations with no failed 

test steps, so we have neglected these operators in our study.  

5.8.3 Discussion on the Results of MC/DC Adequacy, Requirements Coverage, Overlap of Test 

Cases and Performance Efficiency 

Our results regarding the requirement coverage show that all the techniques, except 2-ways, achieved 100% 

requirement coverage. The techniques differed more with respect to the fulfilment of different conditions for 

MC/DC. Overall, the MC/DC condition that evaluates the effectiveness of the test suites in terms of 

‘independent effect on the outcome of a decision’ was the least dominant condition fulfilled by all the test 

suites. The rest of the MC/DC conditions were met 100% by MBT, manual testing and higher strength CT (3- 

and 4-ways).  

Our results have also shown that MBT gave far greater number of unique test cases when compared with CT 

and manual testing. In terms of efficiency, MBT is found to be better than manual testing but worse than CT. 

For CT, we observed that increasing the strength also increased the number of unique test cases along with 

increasing the overall number of test cases. CT was the most efficient of all the techniques but the absence of 

knowledge regarding expected outcomes makes CT dependent on tester’s skills.  

In an industrial setting where manual testing is performed, our results indicate the MBT and CT can both add 

important test cases, with MBT providing the greatest number of additions. Whether such additions are fault 

revealing or not is left as a future investigation but at least in terms of MC/DC coverage, MBT test suite also 

has given evidence in support of its advantage. Our results also showed that 2-way CT strategy does not 

perform better than higher strength CT strategies and 90% of its test cases are covered by MBT as well as 

higher strength CT gives more unique test cases, thus if CT is to be adopted, our results support utilising 

greater than 2-way strength CT.  

What is also clear from our study is that there is no silver bullet when it comes to testing of safety-critical 

systems in terms of effectiveness and efficiency. A mix of techniques with an understanding of advantages 
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and disadvantages in terms of efficiency and effectiveness seems like the best advice for industrial 

practitioners.  

5.8.4 Discussion on the results of Fault Detection Effectiveness, Sensitivity of Test Suites and the 

Relationship Between MC/DC Coverage and Mutation Score 

We see from our results that a high fault detection rate can be achieved using the higher interaction strength 

of CT. However, CT has an increasing cost of completing the test suite with expected outputs and timing 

constraints according to the system requirements. On the other hand, MBT generated a complete set of test 

suites containing inputs, expected outputs, and timing constraints from the model conforming to system 

requirements while achieving an 88% fault detection rate. Moreover, we also found the MBT-generated test 

suite is complete (i.e., contained expected output, and timing constraints) and ready to be executed as well 

as like specification-based manual testing used in the industry.  

The analysis of different mutant operators illustrates that all the test suites do not detect faults related to time 

constraints and thus special test cases should be included to target testing of timing proper- ties. Our results 

further suggest that test suites generated by CT 3-ways, CT 4-ways, and MBT achieved similar effectiveness 

in detecting all functional level faults according to the achieved mutation scores. A deeper analysis, however, 

shows that MBT did not achieve a high mutation score for the operator LRO-I when compared with CT 3-

ways and CT 4-ways and missed generating specific fault-revealing input combinations due to the random 

coverage criteria.  

Our results also indicate that, in general, the higher MC/DC coverage corresponds to a higher mutation score. 

However, there are subtle differences among different techniques. For example, the difference between the 

achieved MC/DC coverage and mutation scores in the case of CT 2-ways and CT 3-ways is greater between 

other techniques.  

Lastly, we argue that a mutation analysis at the FBD level alone is not sufficient to measure the fault detection 

effectiveness of test suites, particularly when safety critical systems are concerned, and further analysis should 

be conducted at the code level in industrial settings. The reason is that for similar requirements, if one FBD 

program is used to generate different instances of code, then a limited number of mutants can be induced 

as well as a fault at the FBD level can also produce multiple faults in different areas of the generated code. 

This has an impact on the mutation score that can be achieved per test technique. Similarly, it is also possible 

that a test suite may not achieve significant effectiveness in terms of fault detection rate at the code level or 

if different FBD pro- grams are used to generate the code for similar requirements.  

5.8.5 Discussion on Results Regarding the Practical Implications of Adopting Passive Testing using 

T-EARS and the Accompanying Toolchain 

Faulty software in safety-critical systems may cause economic damage and, in some cases, loss of human 

lives. At the same time, the embedded software in today’s safety-critical systems grows more and more 

complex, which emphasizes the importance of efficient and realistic testing. One of the methods suggested 
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allowing that is passive testing. The idea is to only observe the system under test, which allows, e.g., parallel 

execution of test cases. In this approach, test cases only monitor the system under test (SUT) and do not alter 

the state of the system at all. Instead, requirements are verified whenever appropriate, independently of the 

input stimuli sequence. Most of these approaches target non-critical software testing, such as protocol testing 

in, e.g., web applications and telecom applications. Such applications often involve sending and receiving 

complex data. While the current passive testing methods have a long history for these applications, the safety-

critical software we address does not require handling comprehensive data transfers and complex state 

machines. Further, due to the complexity of the data and the state machines in the original domain, the 

specification languages used are very complex and often based on mathematical expressions.  Although there 

have been attempts to introduce passive testing to the system-level testing of safety-critical systems, these 

studies are all somewhat limited when it comes to industrial validation and adoption. Also, these do not 

consider practical issues and tooling requirements.  

5.9 Limitations (Threats of Validity) 

 

5.9.1 Limitations of the Results on Modelling Aspects, Behavioural Differences Between Test Cases 

and Initial Experience 

 

5.9.1.1 Internal Validity 

Internal Validity. One internal threat relates to learning since the second version of the model could be 

modelled in a better way because we gained more experience with GW and understood the industrial domain 

better with time. However, we mitigated this factor by consulting and getting continuous input on the 

correctness of both the SUT models from the testing team at BT.  

5.9.1.2 External Validity & Reliability 

We argue that if an- other person with similar experience of the modelling environment and testing domain 

knowledge will replicate this study, the results should be similar, disregarding GW’s randomness in test 

generation. However, different modelling notations and different test generation algorithms may pro- vide 

different results. Another issue is the number of repeated trials of test case generation to have valid data for 

evaluation. We repeated the test generation process for each stopping condition three times to consider the 

possible variations in the number of test steps generated each time and reported the highest number of 

generated steps. 
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5.9.1.3 Construct Validity 

We investigated existing measures from the literature. For example, the modelling aspects used for 

comparison were inspired from an existing taxonomy of MBT. We also used well-known behavioural measures 

of test generation, while few were influenced by the industrial applicability point of view, such as frequency of 

requirements coverage as it is an important aspect of testing from an industrial perspective as it can uncover 

interaction faults on a system level. 

5.9.2 Limitations of the Results on Fault Injection Analysis to Evaluate TIGER-Generated Test Scripts 

One internal validity threat is regarding the correctness of the model of the SUT. It took us several rounds of 

modelling to completely understand the requirements and the test specifications to arrive at a correct model 

that was eventually confirmed as correct by a BT test engineer. Other threats relate to external validity and 

reliability such as human experience, modelling notations and generator algorithms. We expect that if a 

person with similar modelling and testing experience will replicate this study using random walk and edge 

coverage criterion of GW, similar results should be achieved. However, different modelling notations and 

generator algorithms may produce different results. Another issue is that the framework is specifically 

designed for the CPS testing at BT, so it has particularities that may not be applicable to other CPSs but still 

be applicable to multiple projects inside BT. Nevertheless, the description of the framework and the mapping 

procedure can give clues to companies operating in similar domains to apply MBT in practice. We may also 

want the mutation testing at the model level to be supplemented with lower, code-level mutations and then 

validate our framework. We did not have access to code for this study but if it becomes a possibility, this 

research direction is worth investigating. 

5.9.3 Limitations of the Results of MC/DC Adequacy, Requirements Coverage, Overlap of Test 

Cases and Performance Efficiency 

 

5.9.3.1 Internal Validity 

One of the main threats to internal validity is the validation and conformance of the model with system 

requirements. However, we have alleviated this factor by creating the model in multiple iterations and 

continuously consulting with the testing team at BT, which eventually confirmed it as correct. Another issue 

relates to the indirect cost of testing techniques, such as maintenance cost of test suites and development 

time of tools like TIGER. In this study, we have not considered the effect of indirect costs and therefore, 

considering both direct and indirect costs may affect efficiency results. We have spent a fair amount of time 

to analyse all the test suites for coverage and efficiency manually; a manual analysis of such large amount of 

data can result in small errors but these should not be large to affect our results in any meaningful way. 
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5.9.3.2 Reliability and External Validity 

The threats related to reliability and external validity include generalization of the MBT model, size of state 

space, complexity of the system, impact of human experience, generator algorithms and modelling notations. 

We are working with modelling and generation of test suites at system level for the subsystems of TCMS 

developed at BT, so it contains particularities for the generation of test suites that may not be applicable to 

other domains. However, for the replication of this study in a similar domain, we have tried to provide enough 

information about the experimentation setup. We cautiously argue that if another researcher with similar 

experience of the testing domain and modelling will replicate this study, similar results should be produced, 

however different modelling languages, testing tools and generator algorithms may affect the results. 

Moreover, for this study, we have used a part of the TCMS system with their actual number of parameters 

and constraints. Nevertheless, more case studies are required to generalize the results of this study to larger 

systems. 

5.9.3.3 Construct Validity 

The operational measures used in this study for cost estimation of testing techniques were inspired by an 

existing taxonomy of MBT and industrial practices at BT, Sweden. Moreover, the measure for requirement 

and MC/DC coverage for comparative analysis of test suites were determined by a thorough investigation of 

literature and industrial applicability of testing strategies.  

5.9.4 Limitations of the results of Fault Detection Effectiveness, Sensitivity of Test Suites and the 

Relationship Between MC/DC Coverage and Mutation Score 

The threats related to the internal validity include the conformance of the model to system requirements and 

the existence of equivalent mutants. The modelling of system requirements in MBT is a manual pro- cess, and 

it requires a complete understanding of the system requirements and environment. One can misinterpret 

these requirements, impacting the conformance of the model with actual system requirements and thus 

impacting the test suite generated. Hence, to mitigate this factor, we have developed the model in an iterative 

manner and by getting continuous feed- back from the testers at BT.  

Similarly, in mutation testing, the existence of equivalent mutants is also a possible risk to the evaluation of 

test suites. We tried to eliminate this threat by spending a fair amount of time examining the alive mutants 

and test results manually.  

The factors that can affect the reliability and external validity of this study include the particularities of the MBT 

model and test suites specific to the BT’s environment, test generation tools, modelling notations, size of the 

subsystem, human experience, and generation algorithms. We created the model and test suites by using the 

requirements related to a subsystem of the TCMS developed at BT and it contains some particularities related 

to BT’s specific testing environment, libraries, and development tools that may not be relevant to other 

domains. However, we have provided sufficient information on the experimentation methodology and argue 

that if a researcher with similar testing and modelling experience will replicate this study, similar results can 
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be obtained. Furthermore, different test generation tools, modelling notations, and generator algorithms may 

also affect the results. The research into the effectiveness of test suites should therefore require more industrial 

case studies for creating generalizable knowledge.  

The measures used for MC/DC and mutation score in this study were inspired by the literature and evaluation 

metrics used in industrial safety standards, i.e., ISO 26262, IEC 61508, EN 50128, and EN 50657. Moreover, the 

selection of mutants is done by thoroughly investigating the operators used for the development of FBD 

programs from the literature, their industrial applicability, and dependencies on the tools used by the BT for 

developing safety-critical programs.  

 

5.9.5 Limitations of the Results Regarding the Practical Implications of Adopting Passive Testing 

using T-EARS and the Accompanying Toolchain 

We observed a risk that false positives quickly affect the results without proper tuning of the passive test cases. 

Further, our results suggest that mapping of the logical (abstract) signals to technical (concrete) signals is a 

major challenge. Thus, we further improve the translation process’s test case tuning steps and suggest some 

lessons learned when applying passive testing in a real industrial context.  

The translation and tuning of requirements are done manually, which can be a time-consuming activity, so 

future improvements include automating it, e.g., using automated latency analysis. In addition, more empirical 

work on the cost-effectiveness of passive testing in the embedded software industry is needed as well as 

further support for industrial uptake and adoption. 

6 CONCLUSION 

This deliverable contains the work done in Adeptness with regards to BT use case. The focus is on model-

based testing, continuous monitoring through T-EARS and the corresponding empirical results. 

The first study has a focus on the modelling aspect of MBT as well as explores the behavioural differences 

between manually written and MBT generated test cases using an open- source MBT tool (i.e., GW). Based 

on the case study done in close collaboration with BT developing the safety critical TCMS, our results show 

that a testing team can create a complete and representative model of the SUT using both requirements and 

test specifications. This study also shows that GW-generated test cases provide higher frequency of 

requirements coverage than manually written test cases. GW can generate a complete test suite with random 

path genera- tor fulfilling the edge coverage criterion. Lastly, the attractive features of GW and our experience 

of adapting it for a real- world, industrial scenario can help further research on the capabilities of MBT and 

GW in other domains.  

Later, we have proposed a MBT framework, TIGER, focused on the concretization of abstract test cases and 

generation of test scripts for CPSs where embedded software plays an important part. There are three main 
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parts of TIGER: abstract test case generator, test case concretizer and finally, test case generator. We have 

evaluated TIGER in terms of fault detection by inducing faults in the model representing the SUT and then 

generating and executing the test scripts. The results show that test scripts generated by TIGER are executable, 

contains concrete test data and can be used to uncover interaction faults at SiL simulation level. The test 

scripts generated through the correct model did not result in any failed execution step, confirming the correct 

generation and execution, ensuring conformance to the requirements specifications and the implemented 

SUT.  

We further performed comparative analysis between MBT, CT and manual testing techniques in terms of 

MC/DC and requirement coverage. The efficiency of testing techniques was also evaluated, along with 

determination of the differences and overlaps of test suites generated by each testing technique. The 

experimentation results based on an industrial case study showed that regardless of test objectives used to 

develop test cases for each technique (i.e., boundary value analysis (BVA) and equivalence partitioning (EP) 

for manual testing, edge coverage in MBT and t-ways interactions of parameters in CT), each test suite 

achieved a substantial level of MC/DC coverage. However, the test suite generated using MBT provided a 

higher MC/DC coverage. MBT-generated test suite contained ap- proximately 71% of similar test cases, on 

average, generated by other testing techniques as well as highest number of unique test cases, which also 

had an observable effect on MC/DC adequacy. Furthermore, the analysis also showed that MBT-generated 

test suite is highly relevant to manual specification-based testing in terms of complete test case generation 

due to model’s conformance with requirements. Hence, we argue that MBT-generated test suite is most likely 

to uncover system-level faults and it could be used to improve manual testing. On the other hand, CT was 

the most efficient technique when compared to MBT and manual testing but exponential growth of test cases 

while achieving higher MC/DC could affect its efficiency. Also, MBT-generated test suite contains redundant 

test cases, and their exclusion can reduce the execution time, consequently efficiency could be improved.  

As our last investigation within MBT, an experimental evaluation of industrial manual testing and two popular 

system-level automated test generation techniques, MBT and CT, in terms of fault detection effectiveness is 

carried out. In addition, we measure the sensitivity of each test suite towards each type of fault induced by 

different mutant operators. Moreover, we examine the relationship between the MC/DC coverage and 

mutation scores at the system level. The experimental results show that the test suites achieved mutation 

scores within the range of 82% (CT 2-way) and 90% (CT 3-ways and CT 4- ways), whereas other techniques’ 

mutation scores lying within this range. Thus, CT with higher interaction strength (3-ways and 4-ways) was 

found to be the most effective testing technique in terms of achieved mutation score, closely followed by 

MBT with a mutation score of 88%. This means that we found higher-interaction strength CT and MBT as 

most effective in detecting induced faults based on the selected mutant operators, the exception being the 

TRO, where none of the techniques were able to find faults based on this operator. MBT was found to be the 

least effective in detecting faults induced by the LRO- I operator, while manual testing achieved a low mutation 

score in detecting LRO mutants. CT 2-ways was found to be the least effective testing technique in our case. 

On the other hand, manual testing was also found to be efficient in terms of execution time. The results also 

showed that the MBT-generated test suite achieved the highest MC/DC coverage when compared with other 

techniques. Lastly, the analysis of mutation and MC/DC coverage scores showed a general positive 



ADEPTNESS – 871319  PU 
D7.2 – Report on the Results of the Cost-Benefit Assessment 
 

 Adeptness – 871319   87 

   

relationship between both measures for all test suites. Hence, we put forward the hypothesis that the test 

suite achieving adequate MC/DC coverage tends to also provide a higher mutation score.  

With respect to continuous monitoring using passive testing, we conclude that passive testing is adequate for 

testing the studied system-level requirements in a real industrial setting. In addition, we show how passive 

testing can be used to understand requirement coverage and finding faults.  

7 FUTURE WORK 

As future work, we see the need to perform a more thorough and rigorous evaluation of different coverage 

criteria provided by GW, generate test scripts using GW, evaluate it with manually created test scripts in terms 

of efficiency and fault-detection effectiveness, explore the online testing capabilities of GW and running it as 

a Restful service. In future, we also intend to investigate approaches to reduce test suite generated by MBT. 

Moreover, a thorough evaluation and statistical analysis are also warranted to analyse the mutation score and 

MC/DC coverage at the structural level. Lastly, passive testing needs to be launched on a greater scale and 

needs continuous validation to solidify its strengths.  
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